

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

MICROPROCESSOR AND MICROCONTROLLER

LABORATORY

STUDENT LABORATORY MANUAL

 (As per 2018-2019 Academic Regulations)

B.E VI SEMISTER E&CE

SUBJECT CODE: PC 652 EC

Name:___

Roll No.:__

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

MICROPROCESSOR AND MICROCONTROLLER

LABORATORY

STUDENT LABORATORY MANUAL

 (As per 2018-2019 Academic Regulations)

B.E VI SEMISTER E&CE

SUBJECT CODE: PC 652 EC

Prepared by

Mr. M. Mahesh Babu, Assistant Professor

Mrs. Zeenath, Assistant Professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision of the Institute:

To produce ethical, socially conscious and innovative professionals who would contribute to

sustainable technological development of the society.

Mission of the Institute:

To impart quality engineering education with latest technological developments and

interdisciplinary skills to make students succeed in professional practice

To encourage research culture among faculty and students by establishing state of art

laboratories and exposing them to modern industrial and organizational practices

To inculcate humane qualities like environmental consciousness, leadership, social values,

professional ethics and engage in independent and lifelong learning for sustainable contribution

to the society

 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision of the Department:

To strive to become centre of excellence in Education, Research with moral, ethical values and

serve society

Mission of the Department:

M1: To provide Electronics & Communication Engineering knowledge for successful career

either in industry or research

M2: To develop Industry-Interaction for innovation, product oriented research and development.

M3: To facilitate value added education combined with hands-on trainings

 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Program Educational Objectives:

PEO 1: Apply the knowledge of Basic sciences and Engineering in designing and implementing

the solutions in emerging areas of Electronics and Communication Engineering.

PEO 2: Pursue the research or higher education and practise profession.

PEO 3: Adapt to the technological advancements for providing the sustainable Engineering

solutions to meet organisation/society needs

PEO 4: Work as an individual or in a team with professional ethics and values.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Program Outcomes:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

PSO1: Professional Competence: Apply the knowledge of Electronics & Communication

 Engineering principles in different domains like VLSI, Signal processing, Communication,

Embedded system & Control Engineering.

PSO2: Technical Skills: Able to design and implement products using the cutting- edge

software and hardware tools and hence provide simple solutions to complex problems.

PSO3: Social consciousness: Graduates will be able to demonstrate the leadership qualities

and strive for the betterment of organization, environment and society

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Laboratory Code of Conduct

1. Students should report to the concerned labs as per the time table schedule.

2. Studentswhoturnuplatetothelabswillinnocasebepermittedtoperformtheexperiment

scheduled for the day.

3. Students should bring a note book of about 100 pages and should enter the

readings/observations into the note book while performing the experiment.

4. After completion of the experiment, certification of the concerned staff in-charge in the

observation book is necessary.

5. Staff member in-charge shall award 25 marks for each experiment based on continuous

evaluation and will be entered in the continuous internal evaluation sheet.

6. The record of observations along with the detailed experimental procedure of the

experiment performed in the immediate last session should be submitted and certified by the

staff member in-charge.

7. Not more than three students in a group are permitted to perform the experiment on a

set-up for equipment-based labs. Only one student is permitted per computer system for

computer-based labs.

8. The group-wise division made in the beginning should be adhered to, and no student is

allowed to mix up with different groups later.

9. The components required pertaining to the experiment should be collected from the

stores in-charge, only after duly filling in the requisition form/log register.

10. When the experiment is completed, students should disconnect the setup made by them,

and should return all the components/instruments taken for the purpose.

11. Any damage of the equipment or burn-out of components will be viewed seriously by

either charging penalty or dismissing the total group of students from the lab for the

semester/year.

12. Students should be present in the labs for the total scheduled duration.

13. Students are required to prepare thoroughly to perform the experiment before coming to

Laboratory.

14. Procedure sheets/data sheets provided to the students, if any, should be maintained

neatly and returned after the completion of the experiment.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Course Code Course Title Core/ Elective

PC652EC MICROPROCESSOR AND

MICROCONTROLLER LAB
Core

Prerequisite Contact Hours per Week
CIE SEE Credits

MPMC

PC 603EC

L T D P

- - - 2 25 50 1

Course objectives:

1. Apply Assembly language programs on 8086 trainer kit in standalone/serial

2. Classify interface modules into input /output and Memory interfaces with 8086

3. Develop and execute the embedded C programming concepts of 8051 microcontroller.

4. Design and develop 8051embedded C programs for various interface modules.

5. Develop Interface with serial and I2C bus.

Course Outcomes:

1. Apply different addressing modes & Model programs using 8086 Instruction set

2. Explain the usage of string instructions of 8086 for string manipulation, Comparison

3. Develop interfacing applications using 8086 processor

4. Design different programs using C cross compilers for 8051 controller

5. Develop interfacing applications using 8051 controller

PART- A

1. Use of 8086 trainer kit and execution of programs. (Instruction set for simple Programs

using 4 to 5 lines of instruction code under different addressing modes for data transfer,

manipulation, Arithmetic operations)

2. Branching operations and logical operations in a given data.

3. Multiplication and division.

4. Single byte, multi byte Binary and BCD addition and subtraction

5. Code conversions.

6. String Searching and Sorting.

7. Interface a stepper motor to 8086 using 8255 PPI

8. Interface a USART 8251 to 8086 for serial data transfer/Receive

PART - B

[Experiments for 8051 using any C- Cross Compiler & appropriate hardware]

1. Familiarity and use of 8051/8031 Microcontroller trainer, and execution of programs.

2. Instruction set for simple Programs (using 4 to 5 lines of instruction code).

3. Timer and counter operations & programming using 8051.

4. Serial communications using UART

5. Programming using interrupts

6. Interfacing 8051 with DAC to generate waveforms.

7. Interfacing traffic signal control using 8051.

8. Program to control stepper motor using 8051.

9. ADC interfacing with 8051

10. Serial RTC interfacing with 8051

11. LCD interfacing with 8051

Note:

1. Preliminary explanation of the features and use of the tools must be made in 2/3 theory

periods.

2. A total of not less than 12 experiments must be carried out during the semester with at

least 6 from each part.

Suggested Reading:

1. Myke Predko Programming and Customizing the 8051 Microcontroller, TMH,2005

2. Mazidi M.A, Mazidi J.G & Rolin D. Mckinlay, “The 8051 Microcontroller & Embedded

systems using Assembly and C” 2/e, Pearson Education, 2007.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Sl.

No
Title of the Experiment Page No.

PART- A

1 Simple programs under different addressing modes 5 – 9

2 Arithmetic, logical and branching operations 10 -17

3 Multiplication and division 18 - 21

4 Single byte, multi byte binary and BCD addition and subtraction 22 – 29

5 Code conversion 30 – 34

6 String searching and sorting 35 – 42

7 Stepper motor interface to 8086 mp kit 43 – 47

8 USART 8251 interface to 8086 for serial data transfer/receive 48 – 50

PART- B

 9 Familiarity and use of 8051/8031 Microcontroller trainer, and

execution of programs.
 51 – 53

10 Programs using different addressing modes 54 – 59

11 Timer and counter operations & programming using 8051 60 – 62

12 Communication with a Host Computer System 63 – 67

13 Programming using interrupts 68 – 69

 14 Interfacing 8051 with DAC to generate waveforms 70– 74

 15 Interfacing traffic signal control using 8051 75 – 79

16 Programs to control stepper motor using 8051 80 – 84

17 ADC interfacing with 8051 85 – 88

18 Serial RTC interfacing with 8051 89 – 102

19 LCD interfacing with 8051 103 – 112

BEYOND SYLLABUS

1 Factorial of a given number 114

2 The median from the given array of numbers 115 – 116

3 The given string is a palindrome or not 117 – 118

4 Positive & negative numbers in a given series 119

5 Even &odd in a given series 120

6 Parallel communication between two 8086 microprocessor kits 121

7 interfacing LED’S and switches with 8051 kit 122 – 126

8 interfacing 7-SEGMENT DISPLAY with 8051 kit 127 - 132

Methodist College of Engineering & Technology

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Experiment

No.

Title of the Experiment Date Page

No.

Marks Remarks/

Signature E O R T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

E: Experiment (10 Marks) O: Observation (10 Marks) R: Record (5Marks) T: Total (25 Marks)

1

INTRODUCTION

INTRODUCTION TO ESA 86/88E KIT

ESA86/88 E, is an economical and powerful general -purpose microcomputer system the can be

operated with 8086 or 8088 CPU that may be used as an instructional and learning aid and also

as a development tool in R&D labs and industries.

8086 and 8088 are third generation CPUs from INTEL that differ primarily in their

external data paths. 8088 users an 8- bit wide data bus while 8086 uses a 16-bit wide data bus.

ESA 86/88E can be operated with either CPU and the only possible difference would be in the

speed of execution (with 8088 CPU, a small speed degradation occurs, because of the 8-bite

wide data bus). In either case, the CPU is operated in maximum mode.

1.1 SPECIFICATIONS

 Central Processor

o 8086 or 8088 CPU operating a 5MHz in maximum mode.

 Co-Processor

o On-board 8087 Numeric Data processor (optional)

 Memory

o ESA 86/88E provides a total of 128 K Bytes of onboard memory.

 􀂊 64 K Bytes of ROM using two 27256 EPROMs

 􀂊 64 K Bytes of ROM using two 62256 Static RAMs.

 Onboard Peripherals & interfacing Options

 8251A - Universal Synchronous/Asynchronous Receiver/Transmitter supporting

standard baud rates from 110 to 19,200. Baud rate is selected through on-board DIP

switch setting.

 8253-5- Programmable Interval Timer; Timer 0 is used for Baud clock generation Timer

1 and Timer 2 are available to the user.

 8255A- 3 Programmable Peripheral Interface Provide up to 72 Programmable I/O line.

One 8255 is used for controlling LCD and reading DIP Switch. Two 8255s are for the

user, of which one is populated by default and the other is optional.

 8288- Bus Controller used for generating control in Maximum Mode Operation.

 8042/8742 UPI (Universal Peripheral Interface).

8051 FAMILY OF MICROCONTROLLERS

2

8051 family of microcontrollers and its derivatives are increasingly becoming popular for

instrumentation and control applications due to its speed and powerful instruction set which are

essential for real-time applications. This has created the need for a good trainer and development

tools. ESA 51E (a low cost version of ESA 51) provides complete solution for this requirement.

It can be used as a flexible instructional aid in academic institutions and a powerful development

kit in R&D Labs. The system firmware provides stand-alone mode monitor, serial monitor,

single line assembler, disassemble and drivers for EPROM programmer and parallel printer

interfaces. ESA 51E is supplied with comprehensive and user-friendly documentation.

MAIN FEATURES

 ESA 51E operates on single +5V power supply either in stand-alone mode using PC

keyboard and LCD or with host PC through serial (USB/RS-232-C) interface in serial

mode implemented using the on chip serial port of microcontroller.

 Stand-alone and serial monitor programs support the entry of user programs, editing and

debugging facilities like single stepping and full speed execution of user programs.

 Line assembler & disassembler both in stand - alone and serial modes.

 Total on-board memory is 128K bytes of which 88K bytes RAM has battery backup

provision.

 48 I/O lines and four programmable interval timers.

 9 Port lines of 8051 brought out to the right angle ribbon cable connector including INT1.

 Buffered bus signals are available through ribbon cable connector for easy system

expansion.

 Driver software for file upload/download to/from host PC.

ACCESSORIES (OPTIONAL)

 Power Adapter: +5V @ 3A (SMPS)

 PC keyboard for stand-alone mode of operation.

 EPROM programmer interface (2716 through 27512).

 8751 Adapter for the above interface.

 Interface Modules for training purpose : Keyboard, Elevator, Display, ADC with DAC,

Dual DAC, 8 bit-16 Channel ADC, 12 bit 8 Channel ADC, Logic Controller, Traffic

Lights, Tone Generator, Stepper Motor, Opto Isolated Input, Opto Isolated Output, Relay

Output etc.

3

 Power Supply : +5V @ 3A; +12V @ 250mA; -12V @ 100mA and +30V @ 100mA

(required for some of the above interfaces).

 3.6V Ni-Cd battery for power backup to RAM.

 Parallel printer cable.

CENTRAL PROCESSOR

8051 MCU @ 11.0592 MHz.

MEMORY

Two JEDEC sockets provide following ROM : 32K bytes of system firmware using 27256.

RAM : 96K bytes of memory, out of which 32K bytes program memory (using Upper half of

628128) and 64K bytes is data memory (using lower half of 628128). Upper most 8K bytes of

data memory are reserved for I/O addressing and I/O expansion.

PERIPHERALS

8155: Static HMOS 256 bytes RAM with I/O ports and timer. RAM reserved for monitor, 14-bit

timer is available for user and port lines are used for LCD & system configuration.

8255: PPI, Two nos., one supplied, and another for user expansion. One of them can be used for

parallel printer interface.

8253: Programmable interval timer. Three16 bit programmable timers available for user

KBD CNTRL: Universal Peripheral Interface used to interface PC keyboard.

STUDY OF 8051 MICROCONTROLLER

SPECIFICATIONS:

1) 128 KB Memory

2) 64 KB EPROM

3) 64 KB RAM of which 4 KB of data memory

4) Clock frequency 11.0592 MHz.

5) 48 I/O lines using two 8255’s terminated in two 26 pin each.

6) I/O serial: one RS-232 compatible interface using a 9 pin D type female connector.

7) Keyboard : External PC-AT keyboard

8) Display : Alphanumeric LCD module (4 line x 20 char)

PROCEDURE:

Step 1: press E (enter)

Step 2: EXPAND (display)

Step 3: Enter

Step 4: 8051 Line Assembler / Disassembler (Display)

4

Step 5: C =

Step 6: Press “A” Key (C = A) (Enter)

Step 7:Enter the Program

Step 8: Press enter Key

Step 9: C = (Display)

Step 10:Press Q (C = Q) (Enter)

Step 11: PRINT OFF COMMAND = (Go to Command Mode)

Execution of the Program

Step 12: Press G

Step 13:Goto? (Display) (Enter)

Step 14: Burst (Display)

Step 15:ADDR (Initial Address of the Program)

Step 16:Enter

Step 17: Wait Done

Checking the Contents of the register:

Press `S`(Enter)

Substitute (Display) (Enter)

Ext. Memo (Display)

Press Any Key

REGISTER (Display) (Enter)

General (Enter)

Name (Enter)

A = (result)

On pressing enter subsequently all register contents will display

5

Experiment No: 1

Simple Programs under different addressing modes

1.1 Aim: To perform the Assembly Language programs on different addressing modes of 8086

Microprocessor.

1.2 Apparatus:

1. 8086 Trainer kit

2. Power supply

3. Key board

1.3 Programs:

1.3.1 Immediate Addressing Mode

In this type of addressing immediate data is a part of instruction, and appears in the form

of successive byte or bytes.

Algorithm:

1. Immediate data is moved in AL register

2. Immediate data is moved in AH register

3. Immediate data is moved in BX register

4. End the program

ADDRESS Machine

Code

SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET 1 2 3 4 LABEL OPCODE OPERANDS COMMENTS

0000

2000

 START MOV

MOV

MOV

INT

AL,10

AH,20

BX,0FFFF

03

10H is stored in

AL Reg.

20H is stored in

AH Reg.

0FFFF H data is

stored in BX

register.

Terminate the

program.

INPUTS: OUTPUTS:

AL = AX =

AH = BX =

6

BX =

1.3.2 Register to Register Addressing Mode

In register addressing mode, the data is stored in a register and it is referred using the

particular register. All the registers, except IP (instruction pointer) may be used. EX: Mov

BX, AX. In the example, a 16-bit data which is there in AX register is moved into BX

register. Both the source and destination are registers only.

Algorithm:

1. Immediate data is moved in AX register

2. Move the data from source register to the BX register

3. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET 1 2 3 4 LABEL MNEMONIC OPERANDS COMMENTS

0000

3000

 START MOV

MOV

INT

AX,0ABCD

BX,AX

03

0ABCD H is

stored in AX

register.

0ABCD H data

in AX is moved

to BX register.

Terminate the

program.

INPUTS: OUTPUTS:

AX = AX =

 BX =

1.3.3 Direct Addressing Mode

In the direct addressing mode, a 16-bit memory address (offset) is directly specified in

the instruction as a part of it.

EX: Mov AX, [3000h]

In the above example, the data stored in the memory location 3000h is moved into AX

register that is, the contents of memory location 3000h is stored in AL and the contents of

memory location 3001h is stored in AH.

7

 Algorithm:

1. Move the data from source pointer to the Accumulator register.

2. Move the data from source pointer to the CL, CH registers.

3. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET 1 2 3 4 LABEL MNEMONIC OPERANDS COMMENTS

0000

2400

 START MOV

MOV

MOV

INT

AX,[2000]

CL,[2002]

CH,[2003]

03

INPUTS: OUTPUTS:

2000 = AX =

2001 = CX =

2002 =

2003

1.3.4 Register Indirect Addressing Mode

Sometimes, the address of the memory location which contains data or operand is

determined in an indirect way using the offset registers. This mode of addressing is

known as register indirect addressing mode. In this addressing mode, the offset address of

the data is in either BX or SI or DI registers. The data is supposed to be available at the

address pointed to by the content of any of the above registers.

EX: Mov AL, [BX] Mov AL, [SI] Mov AL, [DI]

In the above example, the data stored in the memory location pointed by BX register is

moved into AX register.

 Algorithm:

1. Initialize the pointer value in index register

2. Copy the data from source pointer to the Accumulator register.

3. End the program

8

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET 1 2 3 4 LABEL MNEMONIC OPERANDS COMMENTS

0000

3000

 START MOV

MOV

MOV

INT

SI,2100

AL,[SI]

AX,[SI]

03

INPUTS: OUTPUTS:

2100 = AL =

2101 AX =

1.3.5 Based Indexed Addressing Mode

The effective address of data is formed, in this addressing mode, by adding content of a

base register (any one of BX or BP) to the content of an index register (any one of SI or

DI). The default segment register may be ES or DS.

Ex: MOV AX, [BX] [SI]

Here, BX is the base register and SI is the index register. The effective address is

computed as 10h*DS + [BX] + [SI].

 Algorithm:

1. Initialize the pointer value in index register

2. Initialize the pointer value in BX register

3. Copy the data from source pointer to the Accumulator register.

4. Copy the data from Accumulator register to the Base indexed pointer.

5. End the program

ADDRESS Machine Code SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET 1 2 3 4 LABEL MNEMONIC OPERANDS COMMENTS

0000

2500

 START MOV

MOV

MOV

MOV

MOV

SI,2200

BX,2300

AL,[BX+SI]

AH,[BX+SI+1]

[BX+SI+2],AX

9

INT 03

INPUTS: OUTPUTS:

4500 = AX =

4501 = 4502 =

 4503 =

1.4 Result: we have studied and verified the outputs of simple programs using 8086

Microprocessor instruction set.

1.5 Exercise Questions:

1. Write an 8086 program to copy a 16-bit value into the register or memory location

using different addressing modes.

2. Write an 8086 program to copy 35h into memory locations 4000h to 4004h using

register indirect addressing mode using: a) Without a loop and b) With a loop

3. Write a program to move a source data block starting at address location 3000h to a

destination block whose address is 4000h. The length of the source block is in CX

register.

1.6 Viva Questions:

1) List all the modern microprocessor

2) Name some 16 bit Processor (8086, 80286, 80386L, EX)

3) Name some 32 bit processors (80386DX, 80486, PENTIUM OVERDRIVE)

4) How many bit that 8086 microprocessor supports?

5) What is the size of data bus of 8086?

6) What is the size of address bus of 8086?

7) What is the maximum memory addressing capacity of 8086?

8) Which are the basic parts of 8086?

9) What is an addressing mode?

10

Experiment No: 2

ARITHMETIC, LOGICAL AND BRANCHING OPERATIONS

2.1 AIM: To perform the Assembly Language programs on Arithmetic, Logical and Branching instructions of

8086 Microprocessor.

2.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

2.3 PROGRAMS

ARITHMETIC INSTRUCTIONS

Program 2.3.1: Write an ALP to add two 8-bit numbers using registers and place the result in other register.

Algorithm:

1. Initialize two 8-bit data in registers

2. add the data in registers

3. verify the result in register

4. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

ADD

INT

AL,05

BL,07

AL,BL

03

INPUTS: OUTPUTS:

AL = AL =

BL =

11

Program 2.3.2: Write an ALP to add two 16-bit numbers using registers and place the result in other register

ignoring the possible overflow.

Algorithm:

1. Initialize two 16-bit data in registers

2. add the data in registers

3. verify the result in register

4. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

ADD

INT

AX,1234

BX,5678

AX,BX

03

INPUTS: OUTPUTS:

AX = AX =

BX =

Program 2.3.3: Write an ALP to subtract two 16-bit numbers using registers and place the result in other

register.

Algorithm:

5. Initialize two 16-bit data in registers

6. Subtract the data in registers

7. Store the result in some other register

8. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

AL,05

BL,07

12

SUB

MOV

INT

AL,BL

DX,AX

03

INPUTS: OUTPUTS:

AL = AL =

BL = DX =

Program 2.3.4: Write an ALP to subtract two 16-bit numbers using registers and place the result in other

register.

Algorithm:

1. Initialize two 16-bit data in registers

2. Subtract the data in registers

3. Store the result in some other register

4. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

SUB

MOV

INT

AX,0056

BX,0044

AX,BX

DX,AX

03

INPUTS: OUTPUTS:

AX = AX =

BX = DX =

LOGICAL INSTRUCTIONS

Program 2.3.5: Write an ALP to perform AND logic of two 8-bit numbers using registers.

Algorithm:

1. Initialize two 8-bit data in registers

2. Perform AND logic of data in registers

3. verify the result in register

13

4. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

AND

INT

AL,12

BL,16

AL,BL

03

INPUTS: OUTPUTS:

AL = AL =

BL =

Program 2.3.6: Write an ALP to perform OR logic of two 8-bit numbers using registers.

Algorithm:

1. Initialize two 8-bit data in registers

2. Perform OR logic of data in registers

3. verify the result in register

4. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

3000

 START MOV

MOV

OR

INT

AL,[4050]

BL,[4051]

AL,BL

03

INPUTS: OUTPUTS:

AL = AL =

BL =

14

Program 2.3.7: Write an ALP to perform XOR logic of two 8-bit numbers using Register Indirect addressing.

Algorithm:

1. Initialize memory pointer in register

2. Load two 8-bit data from memory into two registers

3. Perform XOR logic of data in registers

4. verify the result in register

5. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

5000

 START MOV

MOV

INC

MOV

XOR

INT

SI,2050

AL,[SI]

SI

BL,[SI]

AL,BL

03

INPUTS: OUTPUTS:

2050 = AL =

2051 = 2052 =

BRANCHING OPERATIONS:-

Program 2.3.8: Write an ALP to perform largest number from a given Two numbers using Register Indirect

addressing.

Algorithm:

1. Initialize two numbers into registers

2. Compare two numbers in a registers

3. If condition is true go to step 6

4. If condition is false Load greater number to acc

5. verify the result in register

15

6. End the program

FINDING LARGEST BYTE OF GIVEN TWO BYTES

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

CMP

JA

MOV

INT

AL,36

BL,78

AL,BL

300A

AL,BL

03

INPUTS: OUTPUTS:

AL = AL =

BL =

Program 2.3.9: Write 8086 Assembly language program to find the average of 5 numbers stored in a given

series starts from memory offset 5001.

Algorithm:

1. Initialize two memory locations(source and destination) in to registers

2. Clear Accumulator, load count value into count register and also copy count into another register

3. Perform addition of first value from memory location to 8bit Acc.

4. Also perform addition with carry of Ah with 00h value.

5. Increment source memory location for accessing next value

6. Decrement count register value by 1

7. Check zero flag status, If this(jump if not zero) condition is true go to step 3, If this(jump if not zero)

condition is false go to next step

8. Perform average by dividing Accumulator by stored count value

9. Store the result from Accumulator to memory location

10. End the program

16

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START

NEXT:

MOV

MOV

MOV

MOV

ADD

ADC

INC

DEC

JNZ

DIV

MOV

INT

SI,5001

DI,6001

CL,05

BL,CL

AL,[SI]

AH,00

SI

CL

NEXT

BL

[DI],AX

03

INPUTS: OUTPUTS:

5001 = AX =

5002 = 6001 =

5003 = 6002 =

5004 =

5005 =

2.4 RESULT:

We have verified and noted the outputs of Arithmetic, logical and branching instructions.

17

2.5 EXERCISE QUESTIONS:

1) Write a program to add two 8-bit decimal numbers using registers.

2) Write a program to subtract two 8-bit decimal numbers using registers.

3) Write an ALP to find smallest no from the given array.

4) Write an 8086 ALP program to find the factorial of a number

5) Write an 8086 ALP program to sort an integer array in descending order.

6) Write an ALP to sort a given set of 16bit unsigned integers into ascending order using bubble sort

algorithm.

7) Write an 8086 ALP program to find sum of Even numbers in a given series

2.6 VIVA QUESTIONS:

1) Explain about MOV instruction with examples.

2) List the different addressing modes in 8086.

3) What are the functions of BIU?

4) What are the functions of EU?

5) Which are the registers present in 8086?

6) What do you mean by pipelining in 8086?

7) How many general purpose registers are available in 8086?

18

Experiment No: 3

Multiplication and division

3.1 AIM: To perform the Assembly Language programs on multiplication and division operations of 8086

Microprocessor.

3.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

3.3 PROGRAMS:

Program 3.3.1: Write an 8086 ALP Program to multiply two 8-bit unsigned numbers.

Algorithm:

1. Load accumulator with 1st 8-bit number.

2. Load BL register with 2nd 8-bit number.

3. Initialize memory pointer in register

4. Perform multiply operation of data in registers

5. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

MUL

INT

AL,05

BL,07

BL

03

INPUTS: OUTPUTS:

AL = AX =

BL =

19

Program 3.3.2: Write an 8086 ALP Program to division two 8-bit unsigned numbers.

Algorithm:

1. Load accumulator with 1st 8-bit number.

2. Load BL register with 2nd 8-bit number.

3. Initialize memory pointer in register

4. Perform division operation of data in registers

5. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

DIV

INT

AL,06

BL,03

BL

03

INPUTS: OUTPUTS:

AL = AX =

BL =

Program 3.3.3: Write an 8086 ALP Program to multiply two 16-bit unsigned numbers.

Algorithm:

1. Load accumulator with 1st 16-bit number.

2. Load BL register with 2nd 16-bit number.

3. Initialize memory pointer in register

4. Perform multiply operation of data in registers

5. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

MUL

AX,0056

BX,0044

BX

20

INT 03

INPUTS: OUTPUTS:

AX = AX =

BX = DX =

Program 3.3.4: Write an 8086 ALP Program to division two 16-bit unsigned numbers.

Algorithm:

1. Load accumulator with 1st 16-bit number.

2. Load BL register with 2nd 16-bit number.

3. Initialize memory pointer in register

4. Perform division operation of data in registers

5. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START MOV

MOV

DIV

INT

AX,0128

BX,0004

BX

03

INPUTS: OUTPUTS:

AX = AX =

BX = DX =

3.4 RESULT:

we have verified the outputs of ALP of multiplication and division operation.

21

3.5 EXERCISE QUESTIONS:

1. Write an 8086 ALP Program to multiply two 8-bit signed numbers

2. Write an 8086 ALP Program to multiply two 16-bit signed numbers

3. Write an 8086 ALP Program to divide 16-bit unsigned number by an 8-bit unsigned number.

4. Write an 8086 ALP Program to divide 16-bit signed number by an 8-bit signed number.

3.6 VIVA QUESTIONS:

1. Explain multiplication and division instruction in 8086 instruction set with examples.

2. What is the difference between instructions MUL & IMUL?

3. How many pin IC 8086 is?

4. What is the difference between instructions DIV & IDIV?

5. During division operation in which registers the

result will be stored?

22

Experiment No: 4

Single byte, Multi byte Binary and BCD addition and subtraction

4.1 AIM: To perform the Assembly Language programs on Single byte, Multi byte Binary and BCD addition

and subtraction operations of 8086 Microprocessor.

4.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

4.3 PROGRAMS:

Program 4.3.1: Write an ALP for adding two multi byte binary numbers. The two strings of binary numbers

starts from memory location 3100h & 3110h respectively. The result is stored from memory location 3120h

onwards.

Algorithm:

1. Initialize the source pointers, destination pointer & a counter

2. Clear Acc register

3. Move the data stored in first source location to Acc register

4. Add with carry the data in Acc register with the data in second source pointer location

5. Place the sum in destination location

6. Increment the pointers & repeat the process till the count becomes zero

7. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START

REPT1:

MOV

XOR

MOV

MOV

ADC

MOV

INC

SI,3100

AX,AX

DI,3120

CX,0005

AL,[SI]

[DI],AL

SI

23

INC

LOOP

MOV

ADC

MOV

INT

DI

REPT1

AL,00

AL,AL

[DI+1],AL

03

INPUTS: OUTPUTS:

3100 = 3110 = 3120 =

3101 = 3111 = 3121 =

3102 = 3112 = 3122 =

3103 = 3113 = 3123 =

Program 4.3.2: Write an ALP for subtracting two multi byte binary numbers. The two strings of binary

numbers starts from memory location 3100h & 3110h respectively. The result is stored from memory location

3120h onwards.

Algorithm:

1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register

3. Move the data stored in first source location to Acc register

4. Subtract with barrow the data in Acc register with the data in second source pointer location

5. Place the difference in destination location

6. Increment the pointers & repeat the process till the count becomes zero

7. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START

REPT1:

MOV

MOV

XOR

MOV

MOV

SI,3100

DI,3110

AX,AX

BX,3120

CX,0005

24

MOV

SBB

MOV

INC

INC

LOOP

INT

AL,[SI]

AL,[DI]

[BX],AL

SI

DI

REPT1

03

INPUTS: OUTPUTS:

3100 = 3110 = 3120 =

3101 = 3111 = 3121 =

3102 = 3112 = 3122 =

3103 = 3113 = 3123 =

Program 4.3.3: Write an ALP for adding two Single byte BCD numbers. Where numbers are stored from

starting memory address 2100 and store the result into memory address 2600 and carry at 2601.

Algorithm:

1. Load data from memory offset 2100 to register AL (first number).

2. Load data from memory offset 2101 to register BL (second number).

3. Add these two numbers (contents of register AL and register BL).

4. Apply DAA instruction (decimal adjust).

5. Store the result (content of register AL) to memory offset 2600.

6. Set register AL to 00.

7. Add contents of register AL to itself with carry.

8. Store the result (content of register AL) to memory offset 2601.

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL
MNEMONIC

COMMENTS
OPCODE OPERANDS

0000

2000

START MOV

MOV

ADD

AL,[2100]

BL,[2101]

AL,BL

25

DAA

MOV

MOV

ADC

MOV

INT

[2600],AL

AL,00

AL,AL

[2601],AL

03

INPUTS: OUTPUTS:

2100 = 2600 =

2101 = 2601 =

Program 4.3.4: Write an ALP for subtracting single byte BCD numbers. The two bytes of BCD numbers

starts from memory location 2100h & 2200h respectively. The result is stored from memory location 2600h

onwards.

Algorithm:

1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register

3. Move the data stored in first source location to Acc register

4. Add with carry the data in Acc register with the data in second source pointer location

5. Convert the binary value into its BCD equivalent

6. Place the sum in destination location

7. Increment the pointers & repeat the process till the count becomes zero

8. End the program

ADDRESS MACHINE

CODE

OF

MNEMONIC

SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL

MNEMONIC

COMMENTS
OPCODE OPERANDS

0000

2000

START

MOV

MOV

SUB

AL,[2100]

BL,[2101]

AL,BL

26

DAS

MOV

MOV

ADC

MOV

INT

[2600],AL

AL,00

AL,AL

[2601],AL

03

INPUTS: OUTPUTS:

2100 = 2200 = 2600 =

2101 = 2201 = 2601 =

Program 4.3.5: Write an ALP for adding multi byte BCD numbers. The two strings of BCD numbers starts

from memory location 2100h & 2200h respectively. The result is stored from memory location 2600h

onwards.

Algorithm:

1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register

3. Move the data stored in first source location to Acc register

4. Subtract with barrow the data in Acc register with the data in second source pointer location

5. Convert the binary value into its BCD equivalent

6. Place the difference in destination location

7. Increment the pointers & repeat the process till the count becomes zero

8. End the program

ADDRESS
Machine

Code
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START

MOV

MOV

XOR

MOV

MOV

SI,[2100]

DI,[2200]

AX,AX

CX,0005

BX,2600

27

REPT1:

MOV

ADD

DAA

MOV

MOV

ADC

MOV

INC

INC

INC

LOOP

INT

AL,[SI]

AL,[DI]

[BX],AL

AL,00

AL,AL

[BX+1],AL

SI

DI

BX

REPT1

03

INPUTS: OUTPUTS:

2100 = 2200 = 2600 =

2101 = 2201 = 2601 =

2102 = 2202 = 2602 =

2103 = 2203 = 2603 =

2104 = 2204 = 2604 =

Program 4.3.6: Write an ALP for subtracting multi byte BCD numbers. The two strings of BCD numbers

starts from memory location 2100h & 2200h respectively. The result is stored from memory location 2600h

onwards.

Algorithm:

1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register

3. Move the data stored in first source location to Acc register

4. Subtract with barrow the data in Acc register with the data in second source pointer location

5. Convert the binary value into its BCD equivalent

6. Place the difference in destination location

7. Increment the pointers & repeat the process till the count becomes zero

8. End the program

28

ADDRESS
MACHINE

CODE
SYMBOLIC ASSEMBLER INSTRUCTIONS

SEGMENT OFFSET LABEL MNEMONIC OPERANDS COMMENTS

0000

2000

 START

REPT1:

MOV

MOV

XOR

MOV

MOV

MOV

SUB

DAS

MOV

MOV

SBB

MOV

INC

INC

INC

LOOP

INT

SI,[2100]

DI,[2200]

AX,AX

CX,0005

BX,2600

AL,[SI]

AL,[DI]

[BX],AL

AL,00

AL,AL

[BX+1],AL

SI

DI

BX

REPT1

03

INPUTS: OUTPUTS:

2100 = 2200 = 2600 =

2101 = 2201 = 2601 =

2102 = 2202 = 2602 =

2103 = 2203 = 2603 =

2104 = 2204 = 2604 =

4.4 Result: we have analysed, verified the outputs of Binary addition, BCD addition and subtraction

operations.

29

4.5 Exercise Questions:

1. Write an 8086 ALP Program to convert ASCII Code into BCD number.

2. Write an 8086 ALP Program to convert Hexadecimal number into BCD number.

4.6 Viva Questions:

1. What is the size of instruction queue in 8086?

2. What is the function of 01h of INT 21h?

3. How many minimum address lines are required to access 512 KB?

4. What is the supply requirement of 8086?

5. What is the relation between 8086 processor

frequency & crystal Frequency?

6. Explain Functions of Accumulator or AX register?

7. What is Physical address? And how it is generated?

30

Experiment No: 5

CODE CONVERSION

5.1 AIM: To perform the following programs on code conversion using instruction set of 8086

Microprocessor.

1. Binary code to Gray code conversion.

2. Hexadecimal to ASCII code conversion.

3. ASCII to Hexadecimal code conversion.

5.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

5.3 PROGRAM:

Program 5.3.1: Write an 8086 ALP Program to perform Binary number to Gray code conversion.

Algorithm:

1. Load accumulator with 1st 8-bit number.

2. Load BL register with Accumulator value.

3. Logical shift right AL by one time

4. Perform XOR operation of data in registers

5. End the program

ADDRESS MACHINE

CODE

LABEL MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

0000 : 2000

 START MOV

MOV

SHR

XOR

INT

AL,08

BL,AL

AL,01

AL,BL

03

INPUTS: OUTPUTS:

AL = AX =

31

MASM Program:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 OPR1 DB 12h

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 MOV AL, OPR1

 MOV BL, AL

 SHR AL, 01

 XOR AL, BL

 INT 03

 CODE ENDS

 END START

Program 5.3.2: Write an 8086 ALP Program to perform Hexadecimal to ASCII code conversion.

Algorithm:

1. Load accumulator with 1st 8-bit number.

2. Compare Accumulator value with 9.

3. Jump if Acc. Value is greater than 9 to step 6.

4. Perform addition operation of Acc. With 30 value.

5. Jump unconditionally to step 7.

6. Perform addition operation of Acc. With 37 value.

7. End the program.

ADDRESS MACHINE

CODE

LABEL MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

0000 : 2000

 START

MOV

CMP

JA

AL,0B

AL,09

DOWN

32

DOWN:

END:

ADD

JMP

ADD

INT

AL,30

END

AL,37

03

INPUTS: OUTPUTS:

AL = 0Bh AX =

AL = AX =

MASM Program:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 OPR1 DB 42h

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 MOV AL, OPR1

 CMP AL, 09h

 JA REPT1

 ADD AL, 30h

 JMP REPT2

 REPT1: ADD AL, 37h

 REPT2: INT 03

 CODE ENDS

 END START

Program 5.3.3: Write an 8086 ALP Program to perform ASCII code to Hexadecimal conversion.

Algorithm:

1. Load accumulator with 1st 8-bit number.

2. Compare Accumulator value with 39.

3. Jump if Acc. Value is greater than 9 to step 6.

4. Perform subtraction operation of Acc. With 30 value.

5. Jump unconditionally to step 7.

33

6. Perform subtraction operation of Acc. With 37 value.

7. End the program.

ADDRESS MACHINE

CODE
LABEL

MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

0000 : 2000

 START

DOWN:

END:

MOV

CMP

JA

SUB

JMP

SUB

INT

AL,42

AL,39

DOWN

AL,30

END

AL,37

03

INPUTS: OUTPUTS:

AL = 42h AX =

AL = AX =

MASM Program:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 OPR1 DB 42h

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 MOV AL, OPR1

 CMP AL, 39h

 JA REPT1

 SUB AL, 30h

 JMP REPT2

 REPT1: SUB AL, 37h

 REPT2: INT 03

 CODE ENDS

 END START

34

5.4 RESULT: Here, we have noted outputs of code conversion programs, and also verified the practical

values with Theoretical calculated values.

5.5 Exercise Questions:

1. Write an 8086 ALP Program to convert gray code to binary code.

2. Write an 8086 ALP Program to convert an 8 bit BCD number to hexadecimal number.

3. Write an 8086 ALP Program to convert ASCII code to BCD.

4. Write an 8086 ALP Program to convert an 8 bit BCD number to hexadecimal number.

5. Write an ALP to convert 2 digit packed BCD number into its Binary equivalent number.

6. Write an ALP to convert temperature from degree centigrade into degree Fahrenheit using

C=5/9*(F-32).

5.6 Viva Questions:

1. Which are pointers present in this 8086 and what its use?

2. How many segments present in it and what its use?

3. Explain the Functions of BX register?

4. Explain the Functions of CX register?

5. Explain the Functions of DX register?

6. Which is by default pointer for CS/ES?

7. Explain different branching instruction in 8086.

35

Experiment No: 6

STRING SEARCHING AND SORTING

61 AIM: To perform the following programs on strings using instruction set of 8086 Microprocessor.

1. String Searching

2. String sorting a) Ascending order b) Descending order

6.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

6.3 PROGRAM:

String Searching:

Program 6.3.1: To search for a character in the given string and store result in to Acc. The data is present in

memory location 2500h.

Algorithm:

1. Initialize the source pointer, & counter register.

2. Move the string byte which has to be searched in AL register.

3. Compare string byte from source location with the value in AL register

4. Jump to End (step 7) if two values/strings equal

5. Repeat the process till the value becomes equal or count becomes zero

6. Store the result in destination location

7. End the program

ADDRESS MACHINE

CODE
LABEL

MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

0000:2000

 START

UP

MOV

MOV

MOV

MOV

CMP

JE

SI,2500

CL,05

BL,07

AL,[SI]

AL,BL

END

36

END

INC

DEC

JNZ

MOV

INT

SI

CL

UP

AL,00

03

INPUTS: OUTPUTS:

2500 = 01 H 2502= 2504= AL = 07 H

2501 = 02H 2503= BL=00H

MASM Program:

Write an assembly language program to search a number or character from a string.

PROGRAM:

ASSUME CS:CODE, DS:DATA, ES:EXTRA

DATA SEGMENT

STRING1 DB "ENTER A CHARACTER: $"

STRE DB " FOUND $"

STRNE DB " NOT FOUND $"

DATA ENDS

EXTRA SEGMENT

STRING2 DB "METHODIST COLLEGE 12345 $"

STRLEN DW ($-STRING2)

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, EXTRA

 MOV ES, AX

 MOV DX, OFFSET STRING1

 MOV AH, 09H

 INT 21H

 MOV AH, 01H

 INT 21H

37

 REPNE SCASB

 JZ LABLE

 MOV DX, OFFSET STRNE

 MOV AH, 09H

 INT 21H

 JMP EXIT

 LABLE: MOV DX, OFFSET STRE

 MOV AH, 09H

 INT 21H

 EXIT: INT 03H

 CODE ENDS

 END START

Program 6.3.2: write an assembly language program for arranging a given array of number in ascending

order using 8086.

Algorithm:

1. Initialize the source pointer, destination pointer & counter register

2. Move the inner count byte(CL) into outer count register(DL)

3. Move source value (which has to be compared) to AL register

4. Compare AL with second source pointer value

5. If AL value smaller than source pointer value, goto step 7

6. Swap values in AL register and source pointer

7. Increment source pointer and Decrement count value

8. Repeat from step 4 process till the count becomes zero

9. Decrement outer count value(DL)

10. Repeat from step 3 process till the count becomes zero

11. End the program

String Sorting:

a) Ascending order:

ADDRESS MACHINE

CODE

LABEL MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

38

0000:2000

 START

L2:

L1:

CONT:

XOR

MOV

MOV

DEC

MOV

MOV

CMP

JC

XCHG

MOV

INC

LOOP

DEC

MOV

LOOP

INT

AX,AX

CL,05

DL,CL

CL

BX,2100

AL,[BX]

AL,[BX+1]

CONT

AL,[BX+1]

[BX],AL

BX

L1

DL

CL,DL

L2

03

INPUTS: OUTPUTS:

2100 = 05 H 2100 = 01 H

2101 = 03H 2101 = 02H

2102 = 01 H 2102 = 03 H

2103 = 02H 2103 = 04H

2104 = 04H 2104 = 05H

MASM Program:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 LIST DB 03H, 18h, 05H, 09H, 43h, 20H

 COUNT EQU 06

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

39

 XOR AX, AX

 MOV DL, COUNT-1

 AGAIN: MOV CL, DL

 MOV SI, OFFSET LIST

 REPT1: MOV AL, [SI]

 CMP AL, [SI+1]

 JB NEXT

 XCHG [SI+1], AL

 XCHG [SI], AL

 NEXT: INC SI

 LOOP REPT1

 DEC DL

 JNZ AGAIN

 INT 03H

 CODE ENDS

 END START

String Sorting: b) Descending order:

Program 6.3.3: write an assembly language program for arranging a given array of number in descending

order using 8086.

Algorithm:

1. Initialize the source pointer, destination pointer & counter register

2. Move the inner count byte(CL) into outer count register(DL)

3. Move source value (which has to be compared) to AL register

4. Compare AL with second source pointer value

5. If AL value greater than source pointer value, goto step 7

6. Swap values in AL register and source pointer

7. Increment source pointer and Decrement count value

8. Repeat from step 4 process till the count becomes zero

9. Decrement outer count value(DL)

10. Repeat from step 3 process till the count becomes zero

11. End the program

40

ADDRESS MACHINE

CODE

LABEL MNEMONIC COMMENTS

SEGMENT:OFFSET OPCODE OPERANDS

0000:2000

 START

L2:

L1:

CONT:

MOV

MOV

XOR

MOV

MOV

DEC

MOV

MOV

CMP

JNC

XCHG

MOV

INC

LOOP

DEC

MOV

LOOP

INT

AX,3000

DS,AX

AX,AX

CL,05

DL,CL

CL

BX,2100

AL,[BX]

AL,[BX+1]

CONT

AL,[BX+1]

[BX],AL

BX

L1

DL

CL,DL

L2

03

INPUTS: OUTPUTS:

2100 = 05 H 2100 =

2101 = 03H 2101 =

2102 = 01 H 2102 =

2103 = 02H 2103 =

2104 = 04H 2104 =

41

MASM Program:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 LIST DB 65H, 02H, 46H, 38H, 75H, 01H

 COUNT EQU 05

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 MOV DL, COUNT

 AGAIN: MOV CL, DL

 MOV SI, OFFSET LIST

 REPT1: MOV AL, [SI]

 CMP AL, [SI+1]

 JA NEXT

 XCHG [SI+1], AL

 XCHG [SI], AL

 NEXT: INC SI

 LOOP REPT1

 DEC DL

 JNZ AGAIN

 INT 03H

 CODE ENDS

 END START

6.4 RESULT:

We have studied different string operating instructions. We have verified the programs and noted the

practical values.

42

6.5 Exercise Questions:

1. Write an 8086 assembly language program to find the length of the given string.

2. Write an assembly language program to display the given string.(print a given string using DOS

commands)

3. Write an assembly language program to reverse the given string.

4. Write an ALP to perform non-overlapped and overlapped block transfer (with and without string

specific instructions). Block containing data can be defined in the data segment.

5. Write a program to transfer a block of 4 bytes, starting address is 2500 and transfer the block at

address 2600 by using string instructions.

6.6 Viva Questions:

1. Which register is used as COUNT in 8086 mp?

2. What is the function of INT 03 instruction?

3. What is the difference between minimum mode and maximum mode of 8086?

4. What are the process control instructions?

5. What is a difference between HALT and NOP

instruction?

6. Which flag bit is effected when JNZ is executed?

7. What is the difference between CMP and SUB

instructions

8. What is the difference between MOV and XCHG

instruction?

9. Which are strings related instructions?

10. How LOOP instruction can function?

43

Experiment No: 7

STEPPER MOTOR INTERFACE TO 8086 MP KIT

7.1 AIM: To write an assembly language program for Stepper Motor Interface assumed to be connected over

connector J4 of the 8086 trainer kit.

7.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

7.3 Theory:

Stepper motor.

A Stepper Motor is a brushless, synchronous DC Motor. It has many applications in the field of robotics and

mechatronics. The total rotation of the motor is divided into steps. The angle of a single step is known as the

stepper angle of the motor. There are two types of stepper motors Unipolar and Bipolar. Due to the ease of

operation unipolar stepper motor is commonly used by electronics hobbyists. For more details please read the

article Stepper Motor or Step Motor. Stepper Motors can be easily interfaced with a microcontroller using

driver ICs such as L293D orULN2003.

Stepper motor is a brush less motor which converts electrical pulses into mechanical rotation. As the name

indicates it rotates in steps according to the input pulses. A stepper motor usually have a number of field coils

(phases) and a toothed rotor. The step size of the motor is determined by the number of phases and the number

of teeth on the rotor. Step size is the angular displacement of the rotor in one step. If a stepper motor has 4

phases and 50 teeth, it takes 50×4=200 steps to make one complete rotation. So step angle will be

360/200=1.8°.

The stepper motor we are using has 4 poles and a 1/64 reduction gear mechanism for increasing torque. The

step angle of the motor is 5.64°. But when considering the reduction gear, the step angle of the output shaft is

5.64/64°. The internal schematic of the stepper motor is given below.

44

The stepper motor is rotated by switching individual phases ON for a given time one by one. The sequence is

given in the graph below.

BASICS OF STEPPER MOTOR:

Stepper motor is brushless which take digital signals. It converts digital pulses into mechanical shaft rotation.

Rotation is divided into steps and a separate pulse is sent for each step. For each pulse motor rotates a few

degrees which are mostly 1.8 degree angle. As we interface it with controller, so when digital pulses increase

in frequency, the stepping movement of motor converts to continuous rotation of motor. So we can say that

speed of rotation is directly proportional to the frequency of pulses given by controller.

WINDING ARRANGEMENT:

For a two phase stepper motor, there are two winding arrangements of electromagnetic coils.

 Unipolar

 Bipolar

UNIPOLAR MOTOR:

 Only one winding with center tap per phase

 Each winding section is switched on for each direction of magnetic field

45

 Center tap of each winding is made common

BIPOLAR MOTOR:

 A single winding per phase

 Current in winding must be reversed to reverse a magnetic pole

 Two leads per phase, none are common

Circuit diagram:

46

The circuit diagram for interfacing stepper motor to 8255 is shown above. PA.0, PA.1, PA.2 and PA.3 pins are

used for controlling the phases A1, A2, A3 and A4 of the stepper motor respectively. ULN2003 is used for

driving the individual phases of the stepper motor. ULN2003 is a darlington transistor array used for driving

high current loads such as relays and motors. ULN2003 has 8 individual channels each with 1A capacity. The

channels can be paralleled to increase the current capacity. Each channel is fitted with individual freewheeling

diodes. The ULN2003 is operated in current sinking mode. Each channel is activated by giving a logic LOW

at the corresponding input. For example if we make pin 1 of ULN2003 LOW, phase A1 of the stepper motor

gets switched ON.

7.4 PROGRAM:

7.4.1 Stepper Motor rotation in Clockwise direction:

ADDRESS MACHINE

CODE
LABEL

MNEMONIC
COMMENTS

SEGMENT OFFSET OPCODE OPERANDS

0000 2000 MOV DX, 0FFE6 ; Initialize all 8255

0000 MOV AL, 80 ; Ports as output

0000 OUT DX, AL

0000 MOV DX, 0FFE2

0000 MOV AL, 88 ; O/p data to ports

0000

REPEA

T:
OUT DX, AL

0000 CALL DELAY ; Introduce delay

0000 ROR AL, 1 ; rotate data byte

0000 JMP REPEAT ; rotation of motor

0000

DELAY

:
MOV CX, 0800 ; Delay subroutine

0000 L1: LOOP L1

0000 RET

7.4.2 Stepper Motor rotation in Anti-Clockwise direction:

ADDRESS MACHINE

CODE
LABEL

MNEMONIC
COMMENTS

SEGMENT OFFSET OPCODE OPERANDS

47

0000 2000 MOV DX, 0FFE6 ; Initialize all 8255

0000 MOV AL, 80 ; Ports as output

0000 OUT DX, AL

0000 MOV DX, 0FFE2

0000 MOV AL, 88 ; O/p data to ports

0000

REPEA

T:
OUT DX, AL

0000 CALL DELAY ; Introduce delay

0000 ROL AL, 1 ; rotate data byte

0000 JMP REPEAT ; rotation of motor

0000

DELAY

:
MOV CX, 0800 ; Delay subroutine

0000 L1: LOOP L1

0000 RET

7.5 RESULT:

We have observed rotation of stepper motor in clockwise and anti clockwise.

7.6 Viva Questions:

1. Define RS-232.

2. What is use of IN and OUT instruction?

3. What is the function of 8284?

4. Briefly describe how direct and indirect Jumps take

place in 8086.

5. What is the function of AD0-AD15 pins in 8086?

6. Why do we need maximum mode in 8086 MP?

7. Explain the operating mode of 8255?

8. What is the use of A0 and A1 pins of 8255?

9. Write the control word format in the BSR mode.

48

10. Give control word to set PC-5 bit for 8255?

11. Give BSR control word to set and reset PC-3

separately for 8255.

49

Experiment No: 8

USART 8251 Interface to 8086 for serial data transfer/Receive

8.1 AIM: To write an assembly language program to transfer/receive data using interfacing of USART 8251

to the 8086 trainer kit.

8.2 APPARATUS:

1. 8086 Trainer kit

2. Power supply

3. Key board

8.3 Theory:

The 8086 trainer kit is specifically designed to help students to master the required skills in the area of

embedded systems. The kit is designed in such way that all the possible features of the microprocessor will be

easily used by the students.

8251 (USART)

The RS232C interface of PS-TIMER & USART comprises of the universal synchronous/asynchronous

receiver/transmitter 8251 (USART), RS232C driver max 232. The 8251A is used here as a peripheral device

for serial communication and is programmed by the CPU to operate using virtually any serial data

transmission technique. The USART accepts data characters from the CPU in parallel format and then

converts them into a continuous serial data stream for transmission. Simultaneously, it can receive serial data

streams and convert them into parallel data characters for the CPU. The CPU can read the status of the

USART at any time. These include data transmission errors and control signals.

The 8251 is also initialized by specifying both command as well as the mode word. In the Experiment

whatever data is transmitted from the CPU (with the help of RS – 232) will be received by the 8251 and then

will be transmitted back to the CPU and displayed on the screen.

Interfacing 8251 with 8086

Microprocessor don’t have the direct serial communications, so to communicate the data serially to a device

we need a driver to send a character serially, here we use 8251. 8251 is a driver which converts the parallel

data to a serial data the pin detail and control pins are given so according to that we can develop the hardware.

Obviously, 8251 is not directly compatible with these signal levels. Standard method to

interfaceRS232C and TTL levels is with MC1488 quad TTL-to-RS232C drivers and MC1489 quad RS232C-

50

to-TTL receivers. Of the 25 handshake signals provided by the RS232C standard, we will discuss only four

signals which are used in our design. They are the RTS, CTS, RxD and TxD signals.

8.4 Circuit Diagram of Interfacing 8251 with 8086

8.5 Program:

MEMORY OPCODE MNEMONICS

1100 Be 00 15 MOV SI,1500H

1103 B0 36 MOV AL,36H

1105 BA 06 FF MOV DX,FF06

1108 EE OUT DX,AL

1109 B0 40 MOV AL,40H

110B BA 04 FF MOV DX,FF04

110E EE OUT DX,AL

110F B0 01 MOV AL,01H

1111 BA 04 FF MOV DX,FF04

1114 EE OUT DX,AL

1115 B1 05 RELOAD: MOV CL,05H

51

1117 BA 12 FF CHECK: MOV DX,FF12

111A EC IN AL,DX

111B 24 02 AND AL,02H

111D 74 F8 JZ CHECK

111F BA 10 FF MOV DX,FF10

1122 EC IN AL,DX

1123 88 04 MOV [SI],AL

1125 46 INC SI

1126 3C 3F CMP AL,3FH

1128 75 EB JNZ RELOAD

112A FE C9 DEC CL

112C 75 E9 JNZ CHECK

112E CD 02 INT 02

1130 CD 02 INT 02

ADDRESS DATA

1500 48H,45H,4CH,4CH

1504 4FH,2DH,38H,30H (HELLO-8086)

1508 38H,35H,0AH,0DH

150C END

8.6 Result: Here, we observed the data transfer operation from kit to pc vice-versa.

8.7 Viva Questions:

1. What is the reset address of 8086?

2. What are the special functions of AX register?

3. What is the importance of BX in 8086?

4. What are Assembler directives? Describe its use.

5. What is stack? Give stack related instructions.

6. What is function of XLAT instruction?

7. Give examples for 8 / 16 / 32 bit Microprocessor?

8. Describe ASSUME and OFFSET directive.

52

9. What is the use of SEGMENT and ENDS

directives?

10. What is the function of 4Ch of INT 21h?

Experiment No.9

Familiarity and use of 8051/8031 Microcontroller trainer, and execution of programs.

9.1 Aim: Learn the use of 8051/8031 Microcontroller trainer, and execution of programs.

9.2 Apparatus:

1. 8051 Microcontroller development kit

2. Power supply

3. Keyboard

9.3 Programs

9.3.1 (a). Write a program in 8051 to add two 16-bit numbers. The numbers are 3CE7H and 3B8DH. Place

the sum in registers R7 and R6; R6 has the lower byte.

Algorithm:

1. Initialize the first lower byte in Acc register & add it with second lower byte

2. Store the lower sum in R6 register

3. Take the first upper byte in Acc register & add it with second upper byte along with carry

4. Store the upper byte of the result in R7 register

5. End the program

Source Code:

ADDRESS OBJECT CODE MNEMONIC

8000 C3 CLR C

8001 74 E7 MOV A, #0E7H

8003 24 8D ADD A,#8DH

8005 FE MOV R6,A

8006 74 3C MOV A,#3CH

8008 34 3B ADDC A,#3BH

800A FF MOV R7,A

800B 80 FE HERE:SJMP HERE

(Relative address = Target address – PC contents)

53

Enter the codes using the format given below.

<EXAMMEM><PRGMEM> 8000 <NXT> DATA <NXT>…..<NXT>EXEC

Note: After executing the program using GO<8000>EXEC press ‘BREAK’ key.

 Press EXAMREG key twice to check result in registers R6 and R7 respectively.

Format:

<EXAMREG><EXAMREG><BITMEM>6<NEXT><NEXT>

9.3.1(b). Write an 8051 program to multiply two unsigned 8-bit binary numbers. The numbers are stored in

memory locations 8050h and 8051h. Store the result in 8060h and 8061h.

Algorithm:

1. Initialize the pointer DPTR & save the multiplier in B reg

2. Again initialize the pointer DPTR & take the multiplicand in Acc register

3. Multiply two 8-bit data

4. Store the result in the respective memory locations

5. End the program

 Sample data: (8050) = 41h (65)10

 (8051)= 08h

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#8051h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplier in A reg

 MOV 0F0h,A ; Save Multiplier in B reg

 MOV DPTR,#8050h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplicand in A reg

 MUL AB ; Multiply

 MOV DPTR,#8060h ; Store the result

 MOVX @DPTR,A ; in respective memory locations

 INC DPTR

 MOV A,0F0h

 MOVX @DPTR,A

 HERE:SJMP HERE ; End the program

54

Output: (8060)= 08h

(8061)= 02h

i.e., 65X8 = (520)10 = 0208h

9.3.1(c). Write an 8051 program to divide the number in 8050h by the number in 8051h.Store the quotient

and remainder in 8060h & 8061h of data memory respectively.

Algorithm:

1. Initialize the pointer DPTR & save the divisor in B reg

2. Again initialize the pointer DPTR & take the dividend in Acc register

3. Divide two 8-bit data

4. Store the result in the respective memory locations

5. End the program

 Sample data: (8050) =41h Dividend

 (8051)=08h Divisor

 Result : (8060) =08h Quotient

 (8061)=01h Reminder

Hint: Similar to multiplication program.

 Store initial divisor in B reg and dividend in A reg.

 Use instruction DIV AB in place of MUL AB.

 After division operation, quotient is in A reg & remainder is in B reg.

9.4 Result:

we have studied and verified the outputs of simple programs using 8051 Microcontroller instruction

set.

55

Experiment No: 10

Programs using different addressing modes

10.1Aim: Write an 8051 ALP programs using different addressing modes.

10.2 Apparatus:

1. 8051 Microcontroller development kit

2. Power supply

3. Keyboard

10.3 Programs

10.3.1. Write an 8051 program to copy the value 55H into RAM memory locations 40H to 44H using

A) Direct addressing mode

B) Register addressing mode without using Loop and

C) With Loop

Algorithm:

1. Initialize the data in Acc register & copy it directly in the memory location for direct addressing mode

2. Initialize the data in Acc register which has to be moved

3. Move the data from Acc register to the pointer location

4. Repeat the process by incrementing the pointer for ‘n’ times (without a loop) & initialize the counter &

repeat the loop foe ‘n’ times (with a loop)

5. End the program

Source Code:

 A) Using direct addressing mode

 ORG 8000H ; Starting address

 MOV A,#55h ; Move the immediate data in A reg

 MOV 40h,A ; Copy A to RAM Locations

 MOV 41h,A

 MOV 42h,A

 MOV 43h,A

 MOV 44h,A

 HERE: SJMP HERE ; End the program

56

 B) Using reg-indirect addressing mode without loop

 ORG 8000H ; Starting address

MOV A,#55h ; Move the immediate data in A reg

 MOV R0,#40h ; Initialize the pointer R0

 MOV @R0,A ; Move data from A reg to R0 location

 INC R0 ; Increment the pointer

 MOV @R0,A

 INC R0

 MOV @R0,A

 INC R0

 MOV @R0,A

 INC R0

 MOV @R0,A

 HERE:SJMP HERE ; End the program

C) With Loop

 ORG 8000H

 MOV A,#55h ; Move the immediate data in A reg

 MOV R0,#40h ; Initialize the pointer R0

 MOV R2,#05h ; Initialize the counter

 AGAIN:MOV @R0,A ; Move data from A reg to R0 location

 INC R0 ; Increment R0

 DJNZ R2,AGAIN ; Decrement & jump if R2!=0 to AGAIN

 HERE:SJMP HERE ; End the program

10.3.2(a). Six bytes of data are stored in memory locations starting at 50H. Add all the bytes. Use register R7

to save any carries generated. Store the sum at memory locations 60H & 61H.

Algorithm:

1. Initialize the source pointer & counter registers

2. Clear Acc & the register to save carry

3. Add the data in Acc register with data in source pointer location

4. Check the carry flag i.e., if cy=1 then increment the register else repeat steps 3 & 4 till count becomes zero

57

5. Store the result in the desired memory locations

6. End the program

 Sample data: (50)=10h, (51)=25h, (52)=2AH, (53)=4Fh, (54)=60h, (55)=3Fh

 Source Code:

 ORG 8000H ; Starting address

 MOV R0,#50h ; Initialize pointer R0

 MOV R2,#06h ; Initialize the counter R2

 CLR A ; Initial sum=0

 MOV R7,A ; Clear R7 to save carry

 AGAIN:ADD A,@R0 ; Add data at R0 with A reg

 JNC NEXT ; Jump if cy=0 to NEXT

 INC R7 ; Keep track of carries

 NEXT: INC R0 ; Increment pointer

 DJNZ R2,AGAIN ; Decrement & jump if R2!=0 to AGAIN

 MOV 60h,A ; Store LSBy of sum

 MOV 61h,R7 ; Store MSBy of sum

 HERE:JMP HERE ; End the program

 Output = (60)=4Dh

 (61)=01h (MS byte) ; 014Dh

 Format: For entering, executing & Checking results.

Enter source code

 <EXM MEM> <PRG MEM> 8000 <NXT> DATA <NXT>……. <EXEC>

Feed Sample Data

 <EXM MEM> <INTDATA> 50 <NXT> DATA <NXT> DATA…….. <EXEC>

 <EXM MEM> <INTDATA> 60 <NXT>00XT>00<EXEC>

 Run the Program

 <GO><8000> <EXEC>

 Reset

58

 Check Results

 <EXM MEM> <INT DATA> 60 <NXT>….

10.3.2(b).Write an 8051 program to copy a block of 10 bytes of data from RAM locations starting at 35h to

RAM locations starting at 60h.

Algorithm:

1. Initialize the source pointer, destination pointer & a counter register

2. Move the data from source pointer register to the Acc register

3. Move the data from Acc register to the destination pointer location

4. Increment both the pointer registers

5. Repeat the loop for ‘n’ times

6. End the program

 Sample Problem:

 Source block

 (35)=10h, (36) =20h, (37) = 30h, (38) = 40h, (39) = 50h,

 (3A) = 60h, (3B) = 70h, (3C) = 80h, (3D) = 90h, (3E) =A0h

Source Code:

 ORG 8000H ; Starting address

 MOV R0,#35h ; Source pointer

 MOV R1,#60h ; Destination pointer

 MOV R3,#0Ah ; Counter

 BACK:MOV A,@R0 ; Move data from R0 to A reg

 MOV @R1,A ; Move data from A reg to R0 location

 INC R0 ; Increment R0

 INC R1 ; Increment R1

 DJNZ R3,BACK ; Decrement & jump if R3!=0 to BACK

 HERE:SJMP HERE ; End the program

Output: (60)=10h, (61) =20h, (62) = 30h, (63) = 40h, (64) = 50h,

 (65) = 60h, (66) = 70h, (67) = 80h, (68) = 90h, (69) =A0h

59

10.3.2(c).A byte is stored in register R0. Write an 8051 Program to find the number of 1’s in a byte stored in

R0 and Store the number of 1’s in register R2.

Algorithm:

1. Initialize Acc register with the byte for which number of ones has to be counted & counter register

2. Rotate the byte one bit left with carry & check the carry flag

3. If cy=1 then increment result register

else decrement the count by 1 & repeat the steps 2 & 3 till the

count becomes zero

4. End the program

Source Code:

 Let R0 = AAh i.e., 10101010

 ORG 8000H ; Starting address

 MOV R0,#AAh ; Move data in R0

 MOV A,R0 ; Take it in A reg

 MOV R2,#00h ; Clear R2 reg

 MOV R1,#08h ; Initialize the counter R1

 LOOP:RLC A ; Rotate left with cy

 JNC CONT ; Jump if cy=0 to CONT

 INC R2 ; Increment R2

 CONT:DJNZ R1,LOOP ; Decrement & jump if R1!=0 to LOOP

 HERE:SJMP HERE ; End the program

Output: R2=04h

10.3.2(d).Write an 8051 program to find the number 64h from the set of five readings starting from address

location 50H to 54h. If present store 00h in R0, otherwise store FFh in R0.

Algorithm:

1. Initialize the source pointer & counter register

2. Compare the byte in source pointer location with the byte which has to be searched

3. If both the bytes are equal, store 00h in desired register else repeat steps 2 & 3 till the count becomes zero

4. If the byte is not found, store FFh in desired register

60

5. End the program

Sample Problem (1):

 (50) =76h, (51) =45h, (52) =64h, (53) =25h, (54) =22h

Source Code:

 ORG 8000H ; Starting address

 MOV R1,#50h ; Initialize the source pointer R1

 MOV R2,#05h ; Initialize the counter R2

 LOOP:CJNE @R1,#64H,CONT ; Compare & jump not equal to CONT

 MOV R0,#00h ; Store 00H in R0 reg

 HERE1:SJMP HERE1 ; End the program

 CONT:INC R1 ; Increment R1 reg

 DJNZ R2,LOOP ; Decrement & jump if R2!=0 to LOOP

 MOV R0,#FFh ; Store FFH in R0 reg

 HERE2:SJMP HERE2 ; End the program

Output = (R0) = 00h

Sample prob (2)

Replace data in (52) by 94h

Result = (R0) = FFh

10.4 Result:

We have studied and verified the outputs of simple programs on addressing modes using 8051

Microcontroller instruction set.

61

 Experiment No.11

Timer and counter operations & programming using 8051

11.1 AIM: To Perform Timer0 and Timer1 in Counter Mode and Gated Mode Operation.

11.2 APPARATUS:

1. 8051kit with keyboard,

2. Timer module kit,

3. FRC cables

4. Power supply.

11.3 PROCEDURE:

1. Make the power supply connections from 4-way power mate connector on the ALS-NIFC-09 board.

 +5V blue wire

 Ground black wire

2. Connect 26-pin flat cable from interface module to P1 of the trainer kit.

3. Enter the program in the RAM location in 9000 and execute the program GO<STARTING

ADDRESS><EXEC>

11.4 PROGRAMS

11.4.1 PROGRAM TO VERIFY TIMER ‘0’- COUNTER MODE:

ADDRESS OPCODE LABEL MNEMONICS

9200 MOV A,TMOD (TMOD=89)

 ORL A,#05H

 MOV TMOD,A

 SETB TRO (TRO=8C)

 LCALL 68EAH

 LOOP: MOV DPTR,#0194H

 MOV A,TLO (TLO=8A)

 MOVX @DPTR,A

 INC DPTR

 MOV A,THO (THO=8C)

62

 MOVX @DPTR,A

 LCALL 6748H

 SJMP LOOP

Execution:1) short jp1 of 1&2 pins and press sw1 for manual increment

2) Short jp1 of 2&3 pins for auto increment

11.4.2 PROGRAM TO VERIFY TIMER-1 COUNTER MODE:

ADDRESS OPCODE LABEL MNEMONICS

9100

LOOP

MOV A, TMOD

(TMOD=89)

ORL A,#50H

MOV TMOD,A

SETB TR1 (TR1=8E)

LCALL 68EAH

MOV DPTR,#0194H

MOV A,TL1 (TL1=8B)

MOVX @DPTR,A

INC DPTR

MOV A,TH1 (TH1=8D)

MOVX @DPTR,A

LCALL 6748H

SJMP LOOP

Execution: 1) short jp1 of 5&6 pins and press sw2 for manual increment

 2) Short jp2 of 4&5 pins for auto increment

11.5 RESULT: Programs for Timer 0 and Timer 1 in Counter Mode and Gated Mode Operations performed.

63

11.6 Viva Questions:

1) What is the reset address of 8086?

2) What is the size of flag register in 8086? Explain all.

3) What is the difference between 08H and 01H functions of INT 21H?

4) Which is faster- Reading word size data whose starting address is at even or at odd

address of memory in 8086?

5) Which is the default segment base: offset pairs?

11.7 EXERCISE:

1. write an ALP program to study timer-1 gated mode

64

Experiment No.12

Communication with a Host Computer System

12.1 Aim: To Perform Communication Operation with a Host Computer System.

12.2 Apparatus:

1. 8051 kit with keyboard,

2. Computer System

3. Power supply.

12.3 Theory:

ESA 31 operating in the serial mode, can be connected to either a CRT terminal or a host computer system.

When a computer system is the controlling element, it must be executing driver software to communicate with

the ESA 31 target kit.

ESA 31 is supplied with DOS communication driver package XT51 which allow the user to establish serial

communication between the trainer and a host PC thro its Asynchronous com ports (COMI and COM2).

Installation:

a) Configure ESA 86/88E for serial mode of operation and set the serial port of ESA 86/88E for 9600 Baud

rate and No parity (keep DIP switches 1 and 4 in ON position)

b) Connect the PC to ESA 31 trainer over COM1/COM2 serial port using the RS232C serial interface cable

connecter.

The Serial mode of operation:

a) Supports for downloading user programs in to the target ESA 31 kit from a Host computer system in

INTEL HEX format.

b) Also supports for uploading user program to host PC and saving them as HEX files to a system.

Using of X8051 Cross Assembler:

A convenient way of creating a file to be downloaded in to ESA31 is to use a cross assembler for 8051 that

can generate the object code in extended HEX format. X8051 is such a package.

It is a powerful cross assembler for 8051. It can run on any PC/XT/AT compatible system and supports all the

standard mnemonics, pseudo-opcodes (directives) and addressing modes of 8051.

Steps involved in creating a HEX file are as follows:-

Step1:- Select the path folder directory

65

C:\> cd\

C:\> cd51

C:\> edit filename

Step2:- Create a source file using the DOS text editor and save it as filename.asm.

12.4 Example Program:

Write a source program for 16 bit addition using DOS text editor. The numbers are 3CE7H and 3B8DH. Place

the sum in R7 and R6; R6 should have the lower byte.

ORG 8000H

CLR C

MOV A ,#0E7H

ADD A,#8DH

MOV R6,A

MOV A,#3CH

ADDC A,#3BH

MOV R7,A

HERE:SJMP HERE

Save and exit from editor.

Let the source file be saved as add 16.asm

Step3:- Assemble the source file add16.asm using X8051 to create an object file add16.obj as follows:

C:\51 x8051

Listing destination <N,T,D,E,L,P<CR>=N>: d

Generate cross reference? <Y/N <CR>=N>: n

Input Filename: add16.asm

Output Filename:

8051 CROSS ASSEMBLER-VERSION 4.00f

Input Filename: add16.asm

Output Filename: add16.obj

Lines Assembled:________ Assembly Errors:_______

C:\51

66

Step4:- Link the single file add16.obj

Specify code offset and options H for HEX format.

This process creates a hex file add16.hex that can download into ESA-31 kit.

C:\51 link51

Linker copyright<c>1985-version 4.00g

Input Filename: add16.obj

Enter Offset for ‘CODE’: 0

Input Filename: add16.obj

Output Filename: add16.hex

Options(D,S,A,M,X,H,E,T,1,2,3,(CR)=Default):h

Link Errors: ________ Output Format:_______

C:\51

Step 5:- (Optional)

Check the directory to see the files Created for add16

C:\51 dir

Also check the list file for add16 as

C:\51 edit add16.list

Step 6:-

Set the system in the serial communication mode using the XT51 command

C:\86>xt51

Now the following message will appears on the Screen

__________________XT51 Version x, y___________________

ELECTRO SYSTEM ASSOCIATES PVT LTD

BANGALORE

Press any Key to Continue

__

XT51 Checks for the presence of communication ports COM1 and COM2.

67

If Serial communication is established successfully, the command prompt ‘.’ appears on the screen otherwise

the communication parameters are set appropriately using ALT+S command and continue.

Subsequently during the POWER ON RESET, the following sign on message appears on the screen followed

by command prompt.

ESA 31 MONITOR VERSION x.y

Step 7:-

Download the program hex file from host PC to ESA 51 trainer using the CTRL+D command

CTRL+D

Specify download filename: add16.hex

Specify memory type: P

Specify starting address: 8000

Specify ending address:

Downloading program

Run the program using G command as

G 8000

Press Break Key

Note:

If input data is to be entered use <MD> command to enter the data.

Press ESC key to return to command Prompt. >

Use the M (Modify memory) command to examine the contents of specified memory locations.

Further, if the locations are in RAM, their contents can be altered if desired.

Format: - M {P|D|I|B} addresses 1[address 2] <CR>

Ex 1: Examine a series of RAM locations starting at 8820H and modify the contents of the location 8822H

>MD 8820

8820 XX<CR>

8821 XX<CR>

8822 XX 55<CR>

8823 XX<ESC>

EX 2: To enter data at internal RAM locations starting at 40H

>MI 40<CR>

68

40 XX 21<CR>

41 XX 22<CR>

43 XX 55<CR>

44 XX<ESC>

> M (Display Memory) Command

This command is used to display the contents of the Program or External or Internal Memory.

Format:

M {P|D|I}, address1.address2<CR>

EX:

To display the Contents of 5 bytes from location 8020H

>MD 8020, 8024<CR>

69

Experiment No.13

Programming using interrupts

13.1 AIM: Write ALP in 8051 to allow the external interrupt 1.

13.2 APPARATUS: 8051 with keyboard interrupt kit module.

13.3 PROCEDURE:

1. Make the power supply connections from 4-way power mate connector on the ALS- NIFC-09 board.

 +5V blue wire

 Ground black wire

2. Connect 26-pin flat cable from interface module to P1 of the trainer kit.

3. Enter the program in the RAM location in 9000 and execute the program GO<STARTING

ADDRESS><EXEC>

 13.4 PROGRAM:

MEMORY LOCATION OPCODE LABEL MEMONIC

8000 ORG 8000

AGAIN LJMP AGAIN

 ORG 0013

 SETB P1.3

 MOV R3,#255

BACK DJNZ R3,BACK

 CLR P1.3

 ORG 30H

MAIN MOV IE,#10000100B

HERE SJMP HERE

 LCALL 03

70

13.5 RESULT: program for interrupt handling in 8051 verified.

13.6 Viva Questions:

1) Can we use SP as offset address holder with CS?

2) Which is the base registers in 8086?

3) Which is the index registers in 8086?

4) What do you mean by segment override prefix?

5) Whether micro reduces memory requirements?

13.7 EXERCISE:

1. Write an alp program to find the length of the given array using masm software.

2. Write an alp program to find the sum of „n‟ numbers using masm software.

71

Experiment No.14

Interfacing 8051 with DAC to generate waveforms

14.1 AIM:

To write and execute program in 8051 assembly language for interfacing a DAC interface module with ESA

31 microcontroller trainer kit.

14.2 APPARATUS:

1. ESA 31 Microcontroller trainer kit

2. Dual channel DAC module

3. Power supply units

4. 26 Pin connector cable

5. CRO

14.3 THEORY:

To use DAC, initialize 8255A for mode 0 operation with port A and port B as output. Output data on the

appropriate port and observe output wave form at Xout and Yout of the DAC using CRO.

The 16 bit port addresses for 8255A available at J2 connector are:

 Port A Equ E800H

 Port B Equ E801H

 Port C Equ E802H

 Port D Equ E803H

Note: Port A controls Xout and Port B controls Yout of DAC interface module.

14.4 PROGRAMS:

Write an ALP to generate Saw tooth (Up-going and Down-going)

Write an ALP to generate Triangular waveform

Write an ALP to generate Symmetrical Square wave

Write an ALP to generate

Up-going stair case with 5 steps

Down-going stair case with 5 steps

; Assume the DAC interface is connected over J2 of the ESA 31 trainer.

 ORG 8000H

 PORT_A EQU E800H

72

 PORT_B EQU E801H

 PORT_C EQU E802H

 CWR EQU E803H

14.4.1. Program to generate Continuous up going saw tooth.

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h

3. Send the data to the ports A & B through A register

4. Increment A

5. Repeat the steps 3 & 4 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 CLR A ; Start with value 00H

 AGAIN:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 INC A ; Increment DAC input

 SJMP AGAIN ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is measured.

14.4.2. Program to generate continuous down going saw tooth

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with FFh

3. Send the data to the ports A & B through A register

4. Decrement A

5. Repeat the steps 3 & 4 for the generation of continuous waveform

73

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV A,#0FFH ; Start with value FFH

 AGAIN:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 DEC A ; Decrement DAC input

 SJMP AGAIN ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is measured.

14.4.3. Program to generate continuous triangular waveform

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h

3. Send the data to the ports A & B through A register

4. Increment A

5. Repeat the steps 3 & 4 for the generation of up-going saw-tooth waveform

6. Repeat the steps 2-5 with A = FFh & decrementing A for the generation of down-going saw-tooth

7. Repeat the steps 2-6 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 CLR A ; Start with value 00H

 UP:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

74

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 INC A ; Increment DAC input

 CJNE A,#0FFH,UP ; Compare & jump if A!=FFH to UP

 DOWN:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 DEC A ; Decrement DAC input

 CJNE A,#00H,DOWN ; Compare & jump if A!=00H to DOWN

 SJMP UP ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is measured.

14.4.4. Program to generate Symmetrical Square Wave

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h

3. Send the data to the port A through A register & provide the delay

4. Make A = FFh, send it through port A & provide the delay

5. Repeat the steps 2-4 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 BACK:MOV A,#0FFH ; Start with value FFH

 MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY1:DJNZ R0,DLY1 ; for delay

 MOV A,#00H ; Now start with value FFH

75

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY2:DJNZ R0,DLY2 ; for same delay

 SJMP BACK ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is measured.

14.4.5. Program for Stair case (Up-going) with 5 steps

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h

3. Add 33h to A & send the data to the port A through A register & provide the delay

4. Compare A with FFh & Repeat the steps 2 & 3 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV A,#00H ; Start with value 00H

 RPT:ADD A,#33H ; Add 33H to A reg

 MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY1:DJNZ R0,DLY1 ; for delay

 CJNE A,#0FFH,RPT ; Compare & jump if A!=FFH to RPT

 INC A ; Increment A reg

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY2:DJNZ R0,DLY2 ; for delay

 SJMP RPT ; Repeat forever

14.5 Result: The output waveform is observed on CRO & amplitude and time period is measured.

76

Experiment No.15

Interfacing traffic signal control using 8051

15.1 AIM: To write an assembly language program for traffic light signal control interfacing with 8051.

Assume that to be connected over connector J7 of the 8051 trainer kit.

15.2 APPARATUS:

1. 8051 Trainer kit

2. Power supply

3. Traffic light kit

15.3 THEORY:

The traffic light interface simulates the control and operation of traffic lights at a junction of four roads. The

interface provides a set of 6 LED indicators at each of the four corners. Each of these LED s can be controlled

by a port line. Thus the interface allows the user to simulate a variety of traffic simulations using appropriate

software routines.

DESCRIPTION OF THE CIRCUIT:

The organization of 6 LED s is identical at each of the four corners. The organization with reference to the

LED s at “South-West” corner is shown in the figure below:

R = SOUTH RED

A = SOUTH AMBER L = SOUTH LEFT

S= SOUTH STRAIGHT Rg=SOUTH RIGHT DL=SOUTH PEDESTRIAN

The five LED s (except “Pedestrian”) will be ON or OFF depending on the state of corresponding port line

LED is ON, if the Port line is Logic „HIGH‟ and LED is OFF, if it is at logic „LOW‟. The last LED marked

77

DL is a set of two dual color LED s and they both will be either RED or GREEN depending on the state of the

corresponding port line RED if the port line is logic HIGH and GREEN if the port line is logic LOW.

There are four such sets of LED s and these are controlled by 24 port lines of 8255A. Each port line is inverted

and buffered using 7406 (open collector inverter buffers) and is used to control an LED. Dual color LEDs are

controlled by a port line and its complement.

INSTALLATION:

The interface module has 26-pin connector at one edge of the card. This is used for connecting the interface

over J2 of the ESA 31 trainer. The trainer can be in KEYBOARD MODE or SERIAL MODE.

24 LEDS AND CORRESPONDING PORT LINES: PORT A:

 PORT B:

 PORT C:

D7 D6 D5 D4 D3 D2 D1 D0

EP

SP

WP

NP

SS

ES

NS

WS

D7 D6 D5 D4 D3 D2 D1 D0

ER

EA

ERg

EL

SR

SA

SRg

SL

D7 D6 D5 D4 D3 D2 D1 D0

WR

WA

WRg

WL

NR

NA

NRg

NL

78

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the look-up table with port values according to the traffic situations

3. Send the port values through the respective port addresses

4. Provide the delay in between the two states

5. Repeat the process to control the traffic continuously

15.4.1.PROBLEM STATEMENT:

Generate the sequence for PA, PB, and PC such that the following traffic situations are simulated.

Vehicles from SOUTH can go NORTH and WEST Vehicles from WEST can go NORTH

Vehicles from NORTH can go SOUTH Pedestrians can cross on EAST

Vehicles from EAST can go WEST and SOUTH Vehicles from WEST can go EAST

Vehicles from SOUTH can go WEST Pedestrians can cross on NORTH

Vehicles from EAST can go SOUTH

Vehicles from NORTH can go SOUTH and EAST Vehicles from SOUTH can go NORTH Pedestrians can

cross on WEST

Vehicles from EAST can go WEST

Vehicles from WEST can go EAST and NORTH Vehicles from NORTH can go EAST Pedestrians can cross

on SOUTH

No vehicle movement

Pedestrians can cross on all four roads.

The system moves from one state to another state after fixed time delay. The state transition is indicated by

turning ON all the AMBER LEDs and all Pedestrians RED LEDs for a fixed duration. The sequence of the

above states is repeated again and again.

79

; Program memory from 8000H to 804FH

ORG 8000H

PORT A EQU E800H

PORT B EQU E801H

PORT C EQEU E802H

CWR EQU E803H

; Enter the data mentioned below from 0000H to 001EH in data memory.

PORTS: DB 10H, 81H, 7AH ;State 1

DB 44H, 44H, 0F0H ;All Ambers ON

DB 08H, 11H, 0E5H ;State 2

DB 44H, 44H, 0F0H ;All Ambers ON

DB 81H, 10H, 0DAH ;State 3

DB 44H, 44H, 0F0H

DB 11H, 08H, 0B5H ;State 4

DB 44H, 44H, 0F0H

DB 88H, 88H, 00H ;State 5

DB 44H, 44H, 0F0

DB 00H ;Dummy

Result: The output is observed on traffic light interface module.

15.4.2.The following sequence of simple traffic conditions are simulated as: Condition 1

Vehicles from SOUTH can go NORTH and WEST

Vehicles from WEST can go NORTH

Vehicles from NORTH can go SOUTH

Pedestrian can cross on EAST

Condition 2

No vehicle movement

Pedestrians can cross on all four roads

80

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the look-up table with port values according to the traffic situations

3. Send the port values through the respective port addresses

4. Provide the delay in between the two states

5. Repeat the process to control the traffic continuously

PORTS: Db A0h, 81h, 7Ah

Db 44h, 44h, 0F0h

Db 88h, 88h, 00h Db 44h, 44h, 0F0h

Db 00h

Result: The output is observed on traffic light interface module.

81

EXPERIMENT NO.16

Programs to control stepper motor using 8051

16.1 AIM: To write and execute program in 8051 assembly language for interfacing a stepper motor module

with ESA 51 microcontroller trainer kit.

16.2 APPARATUS:

1. ESA 8051/31 Microcontroller trainer kit

2. Stepper motor module

3. Power supply units

4. 26 Pin FRC connector cable

16.3 THEORY:

Data acquisition and control represents the most popular applications of microprocessors & microcontrollers.

Stepper motor control is a very popular application of microprocessors & microcontrollers in control area as

stepper motors are capable of accepting pulses directly from the processors & controllers and move

accordingly.

There are two types of Stepper motors:

Permanent Magnet (PM)

Variable Reluctance (VR)

OPERATION OF STEPPER MOTOR:

Stepper motor consists of two important parts, the stator and the rotor. The stator normally has 4 windings

on four wheels whereas the rotor is magnetic in nature and has got teeth on it, which is magnetized as North

and South poles.

WORKING:

Stepper motor works on the principle of repulsion between magnets. One input to the stepper motor is given

in the form of pulses, provided to the windings on the poles as 1000, 0100, 0010, 0001. The windings are

provided with input by the 8051 microcontroller through the Port A pins of 8255.

Stator is responsible for creating the magnetic field and rotating the rotor.

SPECIFICATIONS OF THE STEPPER MOTOR USED:

The motor is reversible on the application of a torque of 3Kgcm. The power requirement is +5V DC at 1.2A

current per winding at full torque. The step angle is 1.8°, i.e., for every single excitation, the motor shaft

rotates by 1.8°.For the motor to rotate one full revolution (360°), number of steps required is

 360o / 1.8o = 200

The stepper motor used has four stator windings which are brought out through colored wires terminated at a

4 pin polarized female connector. The remaining two wires (White & Black wires) are shorted and

terminated at 2 pin polarized female connector.

82

LOOPING:

The number of times the stepper motor should loop is given by:

Count = No. of teeth on rotor X total No. of rotations.

The Port A pins of 8255 (PA0, PA1, PA2, PA3) are used. The values that have to be sent to Port A to drive

the stepper motor in clock wise direction are 88h, 44h, 22h, 22h and anti clock wise direction are 11h, 22h,

44h, 88h.

16.4 CIRCUIT DESCRIPTION:

The stepper motor interface uses four transistor pairs (SL100 & 2N3055) in a Darlington pair configuration.

Each Darlington pair is used to excite the particular winding of the motor connected to 4 pin connector on

the interface. The inputs to these transistors are from the 8255 PPI I/O lines of the microcontroller trainer

kit. ‘Port A’ lower nibble PA0, PA1, PA2, PA3 is the four lines brought out to the 26 pin FRC male

connector J1 on the interface module. The freewheeling diodes across each winding protect transistors from

switching transients.

INSTALLATION:

The interface has two no. of 3 pins and one four pin connectors. Plug in four pin polarized connector of the

motor to interface and the 3 pin connector of the motor to the 3 pin connector of the interface marked as

“WHT BLK”. Connect the 3 pin female connector of the stepper motor power supply to the connector on

the interface marked as “GND +5V/12V”. Connect the 26 core flat ribbon cable to J1 connector on the

interface module and the other end of the cable to microcontroller 8051 trainer kit J2.

Switch on power to the trainer kit as well as the stepper motor. Key in the program required for the

application and executes the same. When the program is executed, the motor shaft rotates in steps at the

speed depending upon the delay between successive steps, which is generated and can be controlled by the

program. The direction of rotation can also be controlled through software.

CALCULATIONS:

No. of teeth on rotor = N1 = 50

No. of poles on stator = 8

No. of teeth on stator = 8X5 = N2 = 40

Step angle = 360o (N1 – N2) = 1.8O

 N1 * N2

The step angle is 1.8O i.e. for every single excitation; the motor shaft rotates by 1.8O.

 PORT A EQU E800H

 PORT B EQU E801H

 PORT C EQU E802H

83

 CWR EQU E803H

16.5 PROGRAM

16.5.1. Write an 8051 program to drive the Stepper motor continuously in clockwise direction.

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the input pattern in Acc register & send it through port A address

3. Rotate right the value of Acc register

4. Provide the delay

5. Repeat the process for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR, #0E803H

 MOV A, #80H ; Initialize 8255A for mode 0

 MOVX @DPTR, A ; with PA & PB as OUT

 MOV A, #88H ; Move the input pattern to A

 BACK:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR, A ; Out to Port A

 RR A ; Rotate right A reg

 MOV R4, #10H ; Delay routine

 LOOP:MOV R3, #0FFH

 DLY1:DJNZ R3, DLY1

 DJNZ R4, LOOP

 SJMP BACK ; Repeat continuously

Result: The motor shaft rotates continuously in clockwise direction.

16.5.2. Write an 8051 program to drive the Stepper motor continuously in anti-clockwise direction.

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the input pattern in Acc register & send it through port A address

3. Rotate left the value of Acc register

4. Provide the delay

5. Repeat the process for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR, #0E803H

84

 MOV A, #80H ; Initialize 8255A for mode 0

 MOVX @DPTR, A ; with PA & PB as OUT

 MOV A, #88H ; Move the input pattern to A

 BACK:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR, A ; Out to Port A

 RL A ; Rotate left A reg

 MOV R4, #10H ; Delay routine

 LOOP:MOV R3, #0FFH

 DLY1:DJNZ R3, DLY1

 DJNZ R4, LOOP

 SJMP BACK ; Repeat continuously

Result: The motor shaft rotates continuously in anti-clockwise direction.

16.5.3. Write an 8051 program to drive the Stepper motor 5 times clockwise & 3 times anti-clockwise

direction.

Algorithm:

1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize the counter for clockwise rotation & register for step size

3. Load the input pattern in Acc register & send it through port A address

3. Rotate right the value of Acc register

4. Provide the delay

5. Repeat the process for clockwise rotation till the count becomes zero

6. Repeat the process for anti-clockwise rotation

7. Repeat the steps 2-6 for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV R1,#05H ; Initialize the counter

 MOV R0,#0C8H ; Initialize the step size

 MOV A,#88H ; Move the input pattern to A

 BACK1:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

85

 RR A ; Rotate right A reg

 MOV R4,#10H ; Delay routine

 LOOP1:MOV R3,#0FFH

 DLY1:DJNZ R3,DLY1

 DJNZ R4,LOOP1

 DJNZ R0,BACK1

 DJNZ R1,BACK1

 MOV R1,#03H ; Initialize the counter

 MOV R0,#0C8H ; Initialize the step size

 MOV A,#11H ; Move the input pattern to A

 BACK2:MOVX @DPTR,A ; Out to Port A

 RL A ; Rotate left A reg

 MOV R4,#10H ; Delay routine

 LOOP2:MOV R3,#0FFH

 DLY2:DJNZ R3,DLY2

 DJNZ R4,LOOP2

 DJNZ R0,BACK2

 DJNZ R1,BACK2

 SJMP BACK1 ; Repeat continuously

Result: The motor shaft rotates in clockwise direction 5 times & anti-clockwise direction 3 times.

86

Experiment No.17

ADC interfacing with 8051

17.1 AIM: to interface ADC 0809 with 8051 microcontroller using 8255 ports and measurement of analog

voltage.

17.2 APPARATUS REQUIRED: 8051 kit, Power supply unit, ADC module, 26-pin FRC connector.

17.3 INTERFACING DIAGRAM:

17.4 THEORY:

The analog to digital converter chips 0808 & 0809 are 8-bit CMOS, successive approximation

converters. Successive approximation technique is one of the fast techniques for analog to digital conversion.

The conversion delay is 100 microseconds at a clock frequency of 640 KHz, which is quite low as compared

to other converters. These converters do need any external zero or full scale adjustments as they are already

taken care of the internal circuits.

The different pins of 0809 ADC are :

I/P0-I/P7 : Analog Inputs

ADD A,B,C : Address lines for analog inputs

O7 -O0 : Digital 8 bit output with O7 MSB & O0 LSB

SOC : Start of Conversion signal pin

EOC : End of conversion signal pin

OE : Output latch enable pin if high enables output

 8051

 A2

 A1

 I/ORD

 I/OWR

D0 to D7

PC2

PC1

PC0

A1 PA7

A0

 PC7

RST

RD PC6

WR

8
2

5
5

A
N

A
LO

G
 IN

P
U

TS

Vref + Vref -

EOC

 0809

SOC

OE

 A2 A1 A0

PA0-PA7 to O0– O7

 CH 00

 CH 07

00 to 5V DC

 8086 Interfacing with ADC0809 through PPI8255

87

CLK : clock input for ADC

Vcc,GND : Supply pins +5V and ground

Vref+ & Vref-: Reference voltage positive (+5V max) reference voltage negative (0 Volts min)

17.5 PROCEDURE:

Connect 5V, GND to the interface using the 4 way power-mate

Color codes of the 4 way power connecter (power-mate) on the interface

+5V Blue, GND Black

Connect 26 core flat cable from the 8051 to ADC

Enter the program as per the listing given in the manual.

Execute the program

GO <STARTING ADDRESS><EXEC>

1. POLLED MODE: The message “ENTER CHANNEL NO’ is displayed on LCD of the kit in 8051

the ‘E’ is displayed on the kit. Enter the channel no through keyboard

(only 0 to 7) and press EXEC. Digital value of the selected channel will be displayed on data field of

display.

17.6 PROGRAM:

ADC CONVERSION POLLED MODE

2023 CONTROL EQU 2023H ;control port address for 8255

2020 PORTA EQU 2020H ;porta address for 8255

2021 PORTB EQU 2021H ;portb address for 8255

2022 PORTC EQU 2022H ;portc address for 8255

677D UPDD EQU 677DH ;display routine addr in data field

679F GETK EQU 679FH ;get & display key in addr field

1020 PUTK EQU 1020H

2077 RX_BYTE EQU 2077H

68EA CLDIS EQU 68EAH ;CLRDISPLAY

6946 SET_DD EQU 6946H ;SET CURSER POINT

6919 DISPLAY EQU 6919H ;DISPLAY

8000 ORG 8000H

8000 12 68 EA LCALL CLDIS ;CLEAR DISPLAY

8003 00 NOP

8004 00 NOP

8005 75 F0 80 MOV B,#80H

8008 12 69 46 LCALL SET_DD ;SET CONTROL WORD

88

800B 90 80 7C MOV DPTR,#MSG1

800E 12 69 19 LCALL DISPLAY ;SEND MESSAGE TO DISPLAY

8011 12 80 6F LCALL DELAY

8014 90 20 23 MOV DPTR,#CONTROL

8017 74 90 MOV A,#90H ;PORT a I/P, PORT b,c O/P

8019 F0 MOVX @DPTR,A

801A 7F 00GET_NEXT:MOV R7,#00H

801C 00 NOP

801D 12 67 9F LCALL GETK ;GET KEY FOR CH SELCTN

8020 E5 31 MOV A,31H

8022 54 0F ANL A,#0FH ;GETTING EXACT CHANNEL NO

8024 FF MOV R7,A

8025 EF ADC: MOV A,R7

8026 90 20 22 MOV DPTR,#PORTC ;OUT PUT CH NO

8029 F0 MOVX @DPTR,A

802A 74 0D MOV A,#0DH ;SET PC6 (OE)

802C 90 20 23 MOV DPTR,#CONTROL

802F F0 MOVX @DPTR,A

8031 90 20 23 MOV DPTR,#CONTROL

8034 74 0F MOV A,#0FH ;PC7 SET START\ALE

8036 F0 MOVX @DPTR,A

8036 7B 30 MOV R3,#30H ;30MSEC

8038 7C FF LOP:MOV R4,#FFH

803A 00 LOP1:NOP

803B 00 NOP

803C DC FC DJNZ R4,LOP1

803E DB F8 DJNZ R3,LOP

8040 74 0E MOV A,#0EH ;PC7 RESET

8042 F0 MOVX @DPTR,A

8043 00 NOP

8044 00 NOP

8045 90 20 23 MOV DPTR,#CONTROL

8048 74 0C MOV A,#0CH ;RESET PC6 TO READ EOC

804A F0 MOVX @DPTR,A

804B 90 20 20AD1:MOV DPTR,#PORTA ;POLL EOC LINE

804E E0 MOVX A, @DPTR

804F 20 E7 F9 JB ACC.7,AD1 ;HI TO LO

8052 90 20 20AD2:MOV DPTR,#PORTA ;POLL EOC LINE

8055 E0 MOVX A, @DPTR ;LO TO HI

8056 54 80 ANL A,#80H

8058 30 E7 F7 JNB ACC.7,AD2

805B 74 0D MOV A,#0DH ;SET PC6 (OE)

805D 90 20 23 MOV DPTR,#CONTROL

8060 F0 MOVX @DPTR,A

8061 90 20 20 MOV DPTR,#PORTA ;READ DIGITAL VALUE

8064 E0 MOVX A, @DPTR

8065 FE MOV R6,A

8066 12 67 7D LCALL UPDD ;DISPLAY IN DATA FIELD

8069 12 80 6F LCALL DELAY

806C 02 80 1A LJMP GET_NEXT ;GO FOR NEXT CHANNEL

806F

89

806F DELAY:

806F 7A 0F MOV R2,#0FH

8071 7C FF L1:MOV R4,#FFH ;93 MSEC DELAY

8073 7B FF L_OOP:MOV R3,#FFH

8075 DB FE LO_OP:DJNZ R3,LO_OP

8077 DC FA DJNZ R4,L_OOP.

8079 DA F6 DJNZ R2,L1

807B 22 RET

807C

807C 41 44 43 20 50 MSG1 DB ‘ADC POLLED MODE’,0DH

8081 4F 4C 4C 45 44

8086 20 4D 4F 44 45

808B 0D

808C END

17.7 RESULT: Thus interfaced ADC with 8051 microcontroller.

90

Experiment No.18

Serial RTC interfacing with 8051

18.1 Aim: To write an assembly language program for LEDs and switches interfacing with 8051. Assume

that to be connected over connector J7 of the 8051 trainer kit.

18.2 Apparatus:

1. 8051 Trainer kit

2. Power supply

3. Serial RTC interfacing kit

18.3 Theory:
A Real Time Clock (RTC) is basically just like a watch – it runs on a battery and keeps time for you even

when there is a power outage. Using an RTC, you can keep track of long timelines, even if you reprogram

your microcontroller or a power plug.

The real time clock (RTC) is widely used device that provides accurate time and date for many applications.

 Many systems such as IBM pc come with RTC chip on mother board.RTC chip uses an internal battery

which keeps time and date even when the power is off. In some microcontrollers have inbuilt RTC while

others requires interfacing.

Most widely used RTC chip is DS1307 from Dallas Semiconductor.

The chip DS1307 with Philips microcontroller P89V51RD2. Microcontroller communicates with DS1307 by

using I2C communication protocol. I2C interface can operate with data transfer rate up to 400k bits per

second. Microcontroller can operate in transmitter or receiver mode at a time. Received data from RTC chip

we displayed by using LCD. All the settings related to timing and date, we did it by using two push buttons.

Connections: Following table shows the use of microcontroller pins in circuit designing

Micro-controller Pin Connection

P1.0 – P1.7 D0- D7 of LCD

P2.0 SET Button

P2.1 RS pin of LCD

https://engineersgarag.wpengine.com/microcontroller/8051projects/interface-rtc-12c887-AT89C51-circuit
https://engineersgarag.wpengine.com/tutorials/twi-i2c-interface
https://engineersgarag.wpengine.com/electronic-components/16x2-lcd-module-datasheet

91

P2.2 INC. Button

P2.3 En pin of LCD

P2.4 SCL of DS1307

P2.5 SCL of DS1307

18.4 Circuit Flowcharts & Proteus Outputs

a. Main program’s flowchart:

SET TIME FLOWCHART:

18.5 Source Code:

92

/ interfacing ds1307 with 80C51

#include<reg51.h>

/* pins used for external h/w */

sbit RS=P2^1; //connect p2.1 to rs pin of lcd

sbit EN=P2^3; //connect p2.3 to en pin of lcd

sbit SCL=P2^4; //i2c clock pin

sbit SDA=P2^5; //i2c data pin

sbit SET=P2^0; //set button pin

sbit INR=P2^2; //increment button pin

/* some required define(s)*/

#define delay_us _nop_(); //generates 1 microsecond delay

#define LCD P1 //port1 connected to LCD data pins

#define SCLHIGH SCL=1;

#define SCLLOW SCL=0;

#define SDAHIGH SDA=1;

#define SDALOW SDA=0;

/*various functions used in whole program*/

void _nop_(void);

void init_lcd(void);

void cmd_lcd(unsigned char);

void write_lcd(unsigned char);

void display_lcd(unsigned char *);

void delay_ms(unsigned int);

void init_rtc(void);

void set_rtc(void);

void strt_msg(void);

93

void start(void);

void stop(void);

void send_byte(unsigned char);

unsigned char receive_byte(unsigned char);

void write_i2c(unsigned char,unsigned char,unsigned char);

void set_value(void);

void stpwtch(void);

unsigned char read_i2c(unsigned char,unsigned char);

//Give time here to set initial values to ds 1307 as specified in timekeeper register

unsigned char clock[]={0x00,0x59,0x23,0x04,0x20,0x10,0x11};

//clock[]={seconds,minutes,hours,day_of_week,date,month,year};

unsigned char stp[]={0x00,0x00,0x00};

//stopwatch initial value

unsigned char *s[]={"SUN","MON","TUE","WED","THU","FRI","SAT"};

unsigned char slave_ack,add=0,c,k,sas;

unsigned int num;

void main(void)

{

init_lcd();

strt_msg();

//COMMENT THIS SECTION WHILE TRANSFRING PROGRAM SECOND TIME IN H/W

init_rtc();

//always do this

while(1)

{

 if(SET==0)

set_value();

c=read_i2c(0xd0,0x02);//read hours register and display on LCD

/* IMP rtc ds 1307 understands BCD no.sys. our 8051 uC understands HEX no.sys.

 and LCD requires ASCII data,,,,,,,,,,,,,,,,,,

 e.g. lets consider if data read from 1307 is 12 (BCD) i.e. 0001 0010 (BIN)

 so 8051 consider it as 18 (DECIMAL)

 x1=(18/16)+48=49(ASCII) i.e. lcd will show 1 and

 x2=(18%16)+48=50(ASCII) i.e. lcd will show 2

 i.e. 12 on lcd */

94

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd(':');

sas = c & 0x20;

c=read_i2c(0xd0,0x01);//read minutes register and display on LCD

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd(':');

c=read_i2c(0xd0,0x00);//read seconds register and display on LCD

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd(' ');

display_lcd(s[read_i2c(0xd0,0x03)]);//read day register and display

//write_lcd(*s[read_i2c(0xd0,0x03)]);

cmd_lcd(0xc0);// Go to starting position of 2nd line of LCD

c=read_i2c(0xd0,0x04);//read date register and display on LCD

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd('/');

c=read_i2c(0xd0,0x05);//read month register and display on LCD

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd('/');

write_lcd('2'); //write 1st 2 digits of year bcoz only last 2 bits are stored in rtc

write_lcd('0');

c=read_i2c(0xd0,0x06);//read year register and display on LCD

write_lcd((c/16)+48);

write_lcd((c%16)+48);

write_lcd(32); //THIS SECTION SHOWS am/pm

if(sas == 0x20)

{

display_lcd("AM");

//write_lcd(49);

}

else

{

//write_lcd(48);

 display_lcd("PM");

}

delay_ms(110);

cmd_lcd(0x01); // Go to starting position of 1st line of LCD

}

95

}

void start(void) //starts i2c, if both SCK & SDA are idle

{

if(SCL==0) //check SCK. if SCK busy, return else SCK idle

return;

if(SDA==0) //check SDA. if SDA busy, return else SDA idle

return;

SDALOW //High to Low transition on data line SDA makes d start condition

delay_us

SCLLOW //clock low

delay_us

}

 void stop(void) //stops i2c, releasing the bus

{

SDALOW //data low

SCLHIGH //clock high

delay_us

SDAHIGH //Low to High transition on data line SDA makes d stop condition

delay_us

}

void send_byte(unsigned char c) //transmits one byte of data to i2c bus

{

unsigned mask=0x80;

do //transmits 8 bits

{

if(c&mask) //set data line accordingly(0 or 1)

SDAHIGH //data high

else

SDALOW //data low

//generate colck

SCLHIGH //clock high

delay_us

SCLLOW //clock low

delay_us

mask/=2; //shift mask

}while(mask>0);

SDAHIGH //release data line for acknowledge

SCLHIGH //send clock for acknowledge

delay_us

slave_ack=SDA; //read data pin for acknowledge

96

SCLLOW //clock low

delay_us

}

unsigned char receive_byte(unsigned char master_ack) //receives one byte of data from i2c bus

{

unsigned char c=0,mask=0x80;

do //receive 8 bits

{

SCLHIGH //clock high

delay_us

if(SDA==1) //read data

c|=mask; //store data

 SCLLOW //clock low

 delay_us

 mask/=2; //shift mask

}while(mask>0);

if(master_ack==1)

SDAHIGH //don't acknowledge

else

SDALOW //acknowledge

 SCLHIGH //clock high

 delay_us

 SCLLOW //clock low

 delay_us

SDAHIGH //data high

return c;

}

 void write_i2c(unsigned char device_id,unsigned char location,unsigned char c)

//writes one byte of data(c) to slave device(device_id) at given address(location)

{

do

{

start(); //starts i2c bus

send_byte(device_id); //select slave device

if(slave_ack==1) //if acknowledge not received, stop i2c bus

stop();

}while(slave_ack==1); //loop until acknowledge is received

send_byte(location); //send address location

send_byte(c); //send data to i2c bus

stop(); //stop i2c bus

}

97

unsigned char read_i2c(unsigned char device_id,unsigned char location)

//reads one byte of data(c) from slave device(device_id) at given address(location)

{

unsigned char c;

do

{

start(); //starts i2c bus

send_byte(device_id); //select slave device

if(slave_ack==1) //if acknowledge not received, stop i2c bus

stop();

}while(slave_ack==1); //loop until acknowledge is received

 send_byte(location); //send address location

stop(); //stop i2c bus

start(); //starts i2c bus

send_byte(device_id+1); //select slave device in read mode

c=receive_byte(1); //receive data from i2c bus

stop(); //stop i2c bus

return c;

}

void init_lcd(void)

//initialize lcd

{

delay_ms(10); //delay 10 milliseconds

cmd_lcd(0x0e); //lcd on, cursor on

delay_ms(10);

cmd_lcd(0x38); //8 bit initialize, 5x7 character font, 16x2 display

delay_ms(10);

cmd_lcd(0x06); //right shift cursor automatically after each character is displayed

delay_ms(10);

cmd_lcd(0x01); //clear lcd

delay_ms(10);

cmd_lcd (0x80);

}

void cmd_lcd(unsigned char c)

//transmit command or instruction to lcd

{

EN=1;

RS=0; //clear register select pin

LCD=c; //load 8 bit data

EN=0; //clear enable pin

delay_ms(2); //delay 2 milliseconds

}

void write_lcd(unsigned char c)

//transmit a character to be displayed on lcd

98

{

EN=1; //set enable pin

RS=1; //set register select pin

LCD=c; //load 8 bit data

EN=0; //clear enable pin

delay_ms(2); //delay 2 milliseconds

}

 void display_lcd(unsigned char *s)

//transmit a string to be displayed on lcd

{

while(*s)

write_lcd(*s++);

}

void delay_ms(unsigned int i)

//generates delay in milli seconds

{

unsigned int j;

while(i-->0)

{

for(j=0;j<500;j++)

{

 ;

}

}

}

void set_value(void)

//this function used for setting time using SET & INC buttons or pins

{

cmd_lcd(0x80);

display_lcd("WELCOME TO TIME");

cmd_lcd(0xC0);

display_lcd(" SET WIZARD !!!");

delay_ms(300);

cmd_lcd(0x01);

cmd_lcd(0x80);

display_lcd(" SET YOUR RTC ?");

cmd_lcd(0xC0);

display_lcd("YES NEXT");

while(1)

{

if(SET==0)

{

set_rtc();

break;

}

if(INR==0)

{

cmd_lcd(0x01);

stpwtch();

99

break;

}

}

}

void init_rtc()

{

while(add<=6) //update real time clock ic i.e. ds1307 with time

{

write_i2c(0xd0,add,clock[add]);

add++;

}

}

void strt_msg()

{

unsigned int i,j=0;

display_lcd("Welcome to RTC");

cmd_lcd(0xc0);

display_lcd("<<<<<<<<>>>>>>>");

delay_ms(300); //"...(#@#@#)..."

cmd_lcd(0x01);

display_lcd("SKIP INTRODUCTION");

cmd_lcd(0xc0);

display_lcd("YES NO");

while(1)

{

if(SET==0)

{

delay_ms(40);

break;

}

if(i==1000)

{

j++;

i=0;

}

if(INR==0|j==100)

{

cmd_lcd(0x01);

display_lcd("THIS PROJECT IS");

cmd_lcd(0xc0);

display_lcd("DONE BY T.E. ELN");

delay_ms(500);

cmd_lcd(0x01);

display_lcd("<ROLL NO> <NAME>");

delay_ms(250);

cmd_lcd(0x01);

display_lcd("38 AVINASH PATIL");

cmd_lcd(0xc0);

display_lcd("44 AMIT SALUNKHE");

delay_ms(550);

100

cmd_lcd(0x01);

display_lcd("46 SWAPNIL SANKPAL");

cmd_lcd(0xc0);

display_lcd("48 SUMIT SHEKHAR");

delay_ms(550);

cmd_lcd(0x01);

display_lcd("49 PRANAV SHINDE");

delay_ms(300);

cmd_lcd(0x01);

display_lcd("STARTING RTC....");

cmd_lcd(0xC0);

for(i=0;i<17;i++)

{

display_lcd(".");

delay_ms(15);

}

break;

}

i++;

}

cmd_lcd(0x01);

}

void set_rtc()

{

 unsigned char cnt=0x00;

unsigned char q,p,i=0x00;

while(1)

{

if(SET==0x00)

{

cnt++;

delay_ms(50);

cmd_lcd(0x01); // Go to starting position of 1st line of LCD

cmd_lcd(0xc0);

display_lcd("NEXT INC");

cmd_lcd(0x80);

switch(cnt)

{

case 1:

 display_lcd("Minutes:");

break;

case 2:

 display_lcd("Hours :");

break;

case 3:

 display_lcd("Day :");

break;

case 4:

 display_lcd("Date :");

break;

case 5:

101

 display_lcd("Month :");

break;

 case 6:

 display_lcd("Year :");

}

}

if(INR==0)

break;

if(cnt>6)

return;

}

cmd_lcd(0xc0);

display_lcd("SAVE INC");

while(1)

{ if(INR==0)

 {

 delay_ms(10);

 cmd_lcd(0x8A); // Go to starting position of 2nd line of LCD

 p++;

 delay_ms(20);

 switch(cnt)

{

case 1:

if(p>59)

{

 p=0;

}

break;

case 2:

 if(p>23)

{

 p=0;

}

 break;

case 3:

 if(p>7)

{

 p=0;

}

break;

case 4:

 if(p>31)

{

 p=0;

}

break;

case 5:

 if(p>12)

{

 p=0;

}

 break;

102

 case 6:

 if(p>99)

{

 p=0;

}

}

 q=(p/10)<<4;

 q=q|(p%10);

 write_lcd((q/16)+48);

 write_lcd((q%16)+48);

 }

if(SET==0)

 break;

}

write_i2c(0xD0,cnt,q);

cmd_lcd(0x01);

display_lcd("SAVING CHAGES");

cmd_lcd(0xc0);

display_lcd("PLEASE WAIT");

// delay_ms(100);

for(i=0;i<6;i++)

{

display_lcd(".");

delay_ms(40);

}

cmd_lcd(0x01);

}

18.6 Result:

Proteus Window showing output

103

104

Experiment No.19

LCD interfacing with 8051

19.1 AIM: Interface an LCD with 8051 microcontroller.

19.2 APPARATUS:

1. 8051 Trainer kit

2. LCD module

3. FRC cables

4. Power Supply.

19.3 PROCEDURE:

1. Make the power supply connections from 4-way power mate connector on the

ALS- NIFC-09 board.

 +5V blue wire

 Ground black wire

2. Connect 26-pin flat cable from interface module to P1 of the trainer kit.

3. Enter the program in the RAM location in 9000 and execute the

program GO<STARTING ADDRESS><EXEC>

19.4 PROGRAM:

CNTRL EQU 2043H ; 8255 control port address

PORTC EQU 2042H ; 8255 port C address

PORTB EQU 2041H ; 8255 port B address

PORTA EQU 2040H ; 8255 port A address

FUNCTION_SET EQU 38H ; display commands

DIS_ON_OFF EQU 0EH

RETURN_HOME EQU 02H

MODE_SET EQU 06H

CLEAR_DIS EQU 01H

DDRAM_ADD EQU 80H

CNT EQU 40H

CNT1 EQU

105

41H CNT2

EQU 42

106

ADDRESS OP LABEL MNEMONICS

CODE

BACK

MOV SP,#50H

MOV PSW,#00H

MOV CNT2,#10H

MOV R0,#14H

MOV R1,#FFH

LCALL DELAY

MOV DPTR,#CNTRL

MOV A,#80H

MOVX @DPTR,A

LCALL SET_CON_LINE

S

MOV R2,#03H

LCALL SET_WR_CON_LINES

MOV A,#00H

MOVX @DPTR,A

MOV DPTR,#PORTA

MOV A,#FUNCTION_SET

MOVX @DPTR,AMOV

DPTR,#CNTRL

MOV A,#05H

MOVX @DPTR,A

NOP

NOP

MOV A,#04H

MOVX @DPTR,A

MOV R0,#06H

MOV R1,#E4H

LCALL DELAY

DJNZ R2,BACK

107

LCALL CHK_BUSY

108

109

BACK3

MOVX @DPTR,A

MOV DPTR,#CNTRL

MOV A,#05H

MOVX @DPTR,A

NOP

NOP

MOV A,#04H

MOVX @DPTR,A

CLR A

MOV DPTR,#MSG

MOVX A,@DPTR

MOV R1,A

INC DPTR

PUSH DPH

PUSH DPL

LCALL CHK_BUSY

LCALL SET_WR_CON_LINES

MOV A,#01H

MOVX @DPTR,A

MOV DPTR,#PORTA

MOV A,R1

MOVX @DPTR,A

MOV DPTR,#CNTRL

MOV A,#05H

MOVX @DPTR,A

NOP

NOP

MOV A,#04H

110

MOVX @DPTR,A

POP DPL

POP DPH

F1

CLR A

PUSH R0

PUSH R1

MOV R0,#7FH

MOV R1,#FFH

LCALL DELAY

POP R1

POP R0

DJNZ CNT,BACK3

DJNZ CNT1,F1

DJNZ CNT2,FORW1

LJMP FORW

MOV CNT,#08H

PUSH DPH

PUSH DPL

LCALL CHK_BUSY

LCALL SET_WR_CON_LINES

MOV A,#00H

MOVX @DPTR,A

MOV DPTR,#PORTA

MOV A,#C0H

MOVX @DPTR,A

MOV DPTR,#CNTRL

MOV A,#05H

MOVX @DPTR,A

NOP

111

FORW1

CLR A

LJMP BACK3

PUSH DPH

PUSH DPL

MOV R0,#DDRAM_ADD

LCALL CHK_BUSY

LCALL SET_WR_CON_LINES

MOV A,#00H

MOVX @DPTR,A

MOV DPTR,#PORTA

MOV A,R0

MOVX @DPTR,A

MOV DPTR,#CNTRL

MOV A,#05H

MOVX @DPTR,A

NOP

NOP

MOV A,#04H

MOVX @DPTR,A

MOV CNT,#08H

MOV CNT1,#02H

POP DPL

POP DPH

NOP

MOV A,#04H

MOVX @DPTR,A

POP DPL

POP DPH

112

CLR A

 LJMP BACK3

FORW :LCALL 0003H

SET_CON_LINES: MOV DPTR,#CNTRL

 MOV A,#01H

 MOVX @DPTR,A

 MOV A,#03H

 MOVX @DPTR,A

 MOV A,#04H

 MOVX @DPTR,A

 RET

CHK_BUSY: MOV DPTR,#CNTRL

 MOV A,#90H

 MOVX @DPTR,A

 MOV A,#04H

 MOVX @DPTR,A

 MOV A,#00H

 MOVX @DPTR,A

 MOV A,#03H

 MOVX @DPTR,A

BACK2 MOV A,#05H

 MOVX @DPTR,A

 MOV DPTR,#PORTA

 MOVX A,@DPTR

 MOV B,A

 MOV DPTR,#CNTRL

113

 MOV A,#04H

 MOVX @DPTR,A

MOV A,B

 JNB A.7,F2

 LJMP BACK2

F2 MOV DPTR,#CNTRL

 MOV A,#80H

 MOVX @DPTR,A

 RET

SET_WR_CON_LINES: MOV DPTR,#CNTRL

 MOV A,#04H

 MOVX @DPTR,A

 MOV A,#02H

 MOVX @DPTR,A

DELAY: RET

LOOP1: PUSH R1

LOOP: NOP

 DJNZ R1,LOOP

 POP R1

 DJNZ R0,LOOP1

 RET

19.5 RESULT: program for interfacing an LCD with 8051 microcontroller performed.

114

 19.6 Viva:

1) What do you mean by emulator?

2) Stack related instruction?

 3) What do you mean by 20 dup (0)?

4) Which flags of 8086 are not present in 8085?

19.7 EXERCISE:

1) Write an alp program to perform an operation to find the cubes of a given number

using masm software

2) Write an alp program to perform an operation to find the cubes of a given numbers

using MP trainer kit

115

BEYOND THE SYLLABUS

116

Experiments beyond the Syllabus

1. FACTORIAL OF A GIVEN NUMBER

1.1 AIM: To write an assembly language program to factorial of a given number using

MASM Tool.

1.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

1.3 PROGRAM:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 C DB 04H

 B DB 01 DUP (0)

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 0001H

 MOV CX, C

 NEXT: MUL CX

 LOOP NEXT

 MOV B, AX

 INT 03

 CODE ENDS

 END START

1.4 Output:

 -g ax=0018 bx=0000 cx=0000 dx=0000 sp=0000 bp=0000 si=0000 di=0000

ds: 1098 es=1088 ss=1098 cs=1099 ip=0013

-d ds:0 04 18

-u ds:0

117

2. THE MEDIAN FROM THE GIVEN ARRAY OF NUMBERS

2.1 AIM: To write an assembly language program for 8086 to pick the median from the

given array of numbers.

2.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

2.3 PROGRAM:

ASSUME DS: DATA, CS: CODE

 DATA SEGMENT

 A DB 0AH,03H,07H,05H,04H,08H,0EH,01H

 COUNT EQU 08H

 MEDIAN DB 01H DUP(0)

 DATA ENDS

 CODE SEGMENT

 START:MOV AX, DATA

 MOV DS, AX

 MOV DL, COUNT-1

 MOV CL, 0000H

 L3: MOV CL, DL

 MOV SI, OFFSET A

 L2: MOV AL, [SI]

 CMP AL, [SI+1]

 JC L1

 XCHG [SI+1], AL

 XCHG [SI], AL

 L1: INC SI

 LOOP L2

 DEC DL

 JNZ L3

 LEA SI, A

 MOV AX, 0000H

 MOV AX, COUNT

 MOV BL, 02H

118

 DIV BL

 CMP AH, 00H

 JZ L4

 ADD SI, AX

 MOV DL, [SI]

 MOV MEDIAN, DL

 JMP EXIT

 L4: ADD SI, AX

 MOV AX, 0000H

 MOV AL, [SI]

 ADD AL, [SI-1]

 MOV BL, 02H

 DIV BL

 MOV MEDIAN, AL

 EXIT: INT 03H

 CODE ENDS

 END START

119

3. THE GIVEN STRING IS A PALINDROME OR NOT

3.1 AIM: To write an assembly language program to reverse the given string and verify

whether it is a palindrome or not.

3.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

3.3 PROGRAM:

ASSUME DS:DATA, CS:CODE, ES:EXTRA

 DATA SEGMENT

 STRING1 DB “CMRTC”

 STRLEN EQU ($-STRING1)

 MSG1 DB “THE GIVEN STRING IS A PALINDROME$”

 MSG2 DB “THE GIVEN STRING IS NOT A PALINDROME$”

 DATA ENDS

 EXTRA SEGMENT

 STRING2 DB STRLEN DUP(0)

 EXTRA ENDS

 CODE SEGMENT

 START:MOV AX, DATA

 MOV DS, AX

 MOV AX, EXTRA

 MOV ES, AX

 MOV AX, 0000H

 MOV SI, OFFSET STRING1

 MOV DI, OFFSET STRING2

 ADD DI, STRLEN-1

 MOV CX, STRLEN

 L1:MOV AL, DS:[SI]

 MOV ES:[DI], AL

 INC SI

 DEC DI

 LOOP L1

 MOV SI,OFFSET STRING1

 MOV DI,OFFSET STRING2

120

 MOV CX, STRLEN

 CLD

 REP CMPSB

 JE PAL

 MOV DX, OFFSET MSG2

 MOV AH,09

 INT 21H

 JMP NEXT

 PAL: MOV DX, OFFSET MSG1

 MOV AH, 09H

 INT 21H

 NEXT:INT 03

 CODE ENDS

 END START

3.4 Output:

 Methodist-The given string is not a palindrome.

 RADAR- The given string is a palindrome.

121

4. POSITIVE & NEGATIVE NUMBERS IN A GIVEN SERIES

4.1 AIM: To write an assembly language program to find the number of positive& negative

numbers in a given series.

4.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

4.3 PROGRAM:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 LIST DB 12H, -11H, 13H, -20H, 25H,-14H

 COUNT EQU 07H

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 XOR BX, BX

 XOR DX, DX

 MOV CL, COUNT

 MOV SI, OFFSET LIST

 AGAIN: MOV AX,[SI]

 SHL AX, 01H

 JC NEG1

 INC BX

 JMP NEXT

 NEG1: INC DX

 NEXT: ADD SI, 02

 DEC CL

 JNZ AGAIN

 INT 03

 CODE ENDS

 END START

4.4 Output:

122

 -g ax=4cdc bx=0004 cx=0003 dx=0003 sp=0000 bp=0000 si=00007 di=0000

ds=0000 es=11b9 cs=11ca ip=001c

5. EVEN &ODD IN A GIVEN SERIES

5.1 AIM: To write an assembly language program to find even &odd in a given series.

5.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

5.3 PROGRAM:

 ASSUME CS: CODE, DS: DATA

 DATA SEGMENT

 LIST DB 12H, 11H, 13H, 20H, 25H, 18H

 COUNT EQU 06H

 DATA ENDS

 CODE SEGMENT

 START: MOV AX, DATA

 MOV DS, AX

 XOR BX, BX

 XOR DX, DX

 MOV CL, COUNT

 MOV SI, OFFSET LIST

 AGAIN: MOV AX, [SI]

 ROR AX, 01H

 JC NODD

 INC BX

 JMP NEXT

 NODD: INC DX

 NEXT: ADD SI, 02

 DEC CL

 JNZ AGAIN

 INT 03

 CODE ENDS

 END START

5.4 Output:

123

 -g ax=4c03 bx=0003 cx=0003 dx=0003 sp=0000 bp=0000 si=0006 di=0000

00 ds=11c9 es=11b9 ss=11c9 cs=11ca ip=001c

6. PARALLEL COMMUNICATION BETWEEN TWO 8086 MICROPROCESSOR

KITS

6.1 AIM: To write an assembly language program to develop a Parallel Communication

between two 8086 Microprocessor kits using PPI(8255).

6.2 APPARATUS:

1. PC with windows OS

2. MASM Tool

6.3 PROGRAM:

KIT 1: MOV DX,0FFE6

 MOV AL,80H

 OUT DX,AL

 MOV DX,0FFE0

 MOV AL,55H

 OUT DX,AL

 INT 03

KIT 2: MOV DX,0FFE6

MOV AL,90H

OUT DX,AL

MOV DX,0FFE0

 IN AL, DX

 INT 03

6.4 Output:

 Kit 1: Kit 2:

 G 4000 G 4000

 AX=0055 AX=0955

124

7. INTERFACING LED’S AND SWITCHES WITH 8051 KIT

7.1 AIM: To write an assembly language program for LEDs and switches interfacing with

8051. Assume that to be connected over connector J7 of the 8051 trainer kit.

7.2 APPARATUS:

4. 8051 Trainer kit

5. Power supply

6. Key board

7.3 THEORY:

A light-emitting diode (LED) is a two-lead semiconductor light source. It is a p–n junction

diode that emits light when activated.[5] When suitable currents applied to the leads,

electrons are able to recombine with electron holes within the device, releasing energy in the

form of photons. This effect is called electroluminescence, and the colour of the light

(corresponding to the energy of the photon) is determined by the energy band gap of the

semiconductor. LEDs are typically small (less than 1 mm2) and integrated optical

components may be used to shape the radiation pattern.

Electronic symbol

Appearing as practical electronic components in 1962, the earliest LEDs emitted low-

intensity infrared light. Infrared LEDs are still frequently used as transmitting elements in

remote-control circuits, such as those in remote controls for a wide variety of consumer

electronics. The first visible-light LEDs were of low intensity and limited to red. Modern

LEDs are available across the visible, ultraviolet, and infrared wavelengths, with very high

brightness.

LEDs have many advantages over incandescent light sources, including lower energy

consumption, longer lifetime, improved physical robustness, smaller size, and faster

switching. Light-emitting diodes are used in applications as diverse as aviation

lighting, automotive headlamps, advertising, general lighting, traffic signals, camera flashes,

lighted wallpaper and medical devices.

Main LED materials: The main semiconductor materials used to manufacture LEDs are:

https://en.wikipedia.org/wiki/Light-emitting_diode#cite_note-5
https://en.wikipedia.org/wiki/Electronic_symbol

125

 Indium gallium nitride (InGaN): blue, green and ultraviolet high-brightness

LEDs

 Aluminum gallium indium phosphate (AlGaInP): yellow, orange and red high

brightness LEDs

 Aluminum gallium arsenide (AlGaAs): red and infrared LEDs

 Gallium phosphate (GaP): yellow and green LEDs

Benefits of LEDs compared with incandescent and fluorescent illuminating devices,

include:

 Low power requirement: Most types can be operated with battery power

supplies.

 High efficiency: Most of the power supplied to an LED or IRED is converted into

radiation in the desired form, with minimal heat production.

 Long life: When properly installed, an LED or IRED can function for decades.

Typical applications include:

 Indicator lights: These can be two-state (i.e., on/off), bar-graph, or alphabetic-

numeric readouts.

 LCD panel backlighting: Specialized white LEDs are used in flat-panel

computer displays.

 Fiber optic data transmission: Ease of modulation allows wide communications

bandwidth with minimal noise, resulting in high speed and accuracy.

 Remote control: Most home-entertainment "remotes" use IREDs to transmit data

to the main unit.

SWITCH:

A switch is a device which is designed to interrupt the current flow in a circuit, in other

words, it can make or break an electrical circuit. Every electrical and electronics application

uses at least one switch to perform ON and OFF operation of the device.

So the switches are the part of a control system and without it, control operation cannot be

achieved. A switch can perform two functions, namely fully ON (by closing its contacts) or

fully OFF (by opening its contacts).

When the contacts of a switch are closed, the switch creates the closed path for current flow

and hence load consumes the power from source. When the contacts of a switch are open, no

power will be consumed by the load as shown in below figure.

126

There are numerous switch applications found in wide variety fields such as home,

automobiles, industrial, military, aerospace and so on. In some applications multi way

switching is employed (like building wiring), in such cases two or more switches are

interconnected to control an electrical load from more than one location.

Switches can be of mechanical or electronic type:

Mechanical switches must be activated physically, by moving, pressing, releasing, or

touching its contacts.

Electronic switches do not require any physical contact in order to control a circuit.

These are activated by semiconductor action.

Interfacing Switch

Figure shows how to interface the switch to microcontroller. A simple switch has an

open state and closed state. However, a microcontroller needs to see a definite high

or low voltage level at a digital input. A switch requires a pull-up or pull-down

resistor to produce a definite high or low voltage when it is open or closed. A resistor

127

placed between a digital input and the supply voltage is called a "pull-up" resistor

because it normally pulls the pin's voltage up to the supply.

We now want to control the LED by using switches in 8051 kit. It works by turning

ON a LED & then turning it OFF when switch is going to LOW or HIGH.

7.4 PROGRAM:

7.4.1 PROGRAM FOR BLINKING LED’S:

ADDRESS

MACHINE

CODE
LABEL MNEMONIC COMMENTS

 Opcode Operands

8000 MOV 0A0,#0E8 ; Initialize all 8255

 MOV R0,#03H ; Ports as output

 MOV A,#80H

 MOVX @R0,A

 MOV R0,#00

 MOV A, #77

; I/p data from

switch

 REPT: MOVX @R0, A

 ACALL DELAY ; Introduce delay

 RL A ;

 SJMP REPT ;

 DELAY: MOV R5, #0FFH ; Delay subroutine

 L1: MOV R4, #0F0H

 L2: DJNZ R4,L2

 DJNZ R5,L1

 RET

https://www.pantechsolutions.net/microcontroller-boards/8051-development-board

128

7.4.2 PROGRAM TO INTERFACE SWITCHES AND LED’S:

ADDRESS

MACHINE

CODE
LABEL MNEMONIC COMMENTS

 Opcode Operands

8000 MOV 0A0,#0E8 ; Initialize all 8255

 MOV R0,#03H ; Ports as output

 MOV A,#82H

 MOVX @R0,A

 REPT: MOV R0, #01H

 ACALL DELAY ; Introduce delay

 MOVX A, @R0 ; O/p data to ports

 MOV R0, #00H

 MOVX @R0, A

 ACALL DELAY ; Introduce delay

 SJMP REPT ;

 DELAY: MOV R5, #0FFH ; Delay subroutine

 L1: MOV R4, #99H

 L2: DJNZ R4,L2

 DJNZ R5,L1

 RET

7.5 RESULT: we have interfaced LEDs and switches with 8051. Verified the outputs LEDs

with on –off switches.

7.6 Viva Questions:

1. Explain the register IE format of 8051.

2. Explain the register IP format of 8051.

3. State the use of T0 pin of 8051?

4. Give the functions of each bit in TMOD register.

5. Explain the special function of port – 3 of 8051.

6. What is the function of PCON register?

7. Which register holds the serial data interrupt bits TI and RI.

8. What is the address of the stack when the 8051 is reset?

9. List the all Boolean instructions.

10. List the conditional control transfer instructions.

129

8. INTERFACING 7-SEGMENT DISPLAY WITH 8051 KIT

8.1 AIM: To write an assembly language program for interfacing 7-segment display with

8051 and display numbers 0 to 9 on 7-segment display. Assume that to be connected

over connector J7 of the 8051 trainer kit.

8.2 APPARATUS:

1. 8051 Trainer kit

2. Power supply

3. Key board

8.3 THEORY:

A light-emitting diode (LED) is a two-lead semiconductor light source. It is a p–n junction

diode that emits light when activated. When suitable currents applied to the leads,

electrons are able to recombine with electron holes within the device, releasing energy in the

form of photons. This effect is called electroluminescence, and the colour of the light

(corresponding to the energy of the photon) is determined by the energy band gap of the

semiconductor. LEDs are typically small (less than 1 mm2) and integrated optical

components may be used to shape the radiation pattern.

Electronic symbol

Appearing as practical electronic components in 1962, the earliest LEDs emitted low-

intensity infrared light. Infrared LEDs are still frequently used as transmitting elements in

remote-control circuits, such as those in remote controls for a wide variety of consumer

electronics. The first visible-light LEDs were of low intensity and limited to red. Modern

LEDs are available across the visible, ultraviolet, and infrared wavelengths, with very high

brightness.

SEVEN SEGMENT DISPLAY

An LED or Light Emitting Diode is a solid state optical pn-junction diode which emits light

energy in the form of photons.

https://en.wikipedia.org/wiki/Electronic_symbol

130

The seven segment display is the most common display device used in many gadgets, and

electronic appliances like digital meters, digital clocks, microwave oven and electric stove,

etc. These displays consist of seven segments of light emitting diodes (LEDs) and that is

assembled into a structure like numeral 8. Actually seven segment displays contain about 8-

segments wherein an extra 8th segment is used to display dot. This segment is useful while

displaying non integer number. Seven segments are indicated as A-G and the eighth segment

is indicated as H. These segments are arranged in the form of 8 which is shown in the seven

segment display circuit diagram.

7 segment Display Pin Diagram

A seven segment displays are generally available in ten pin package. In that 8 pins relate to

the 8 LEDs, the remaining pins at middle are internally shorted. These segments come in two

outlines they are common cathode and common anode. In common cathode configuration, the

negative terminals are connected to the common pins and the common is connected to the

ground. When the corresponding pin is given high, then particular LED glows. In a common

anode arrangement, the common pin is given to logic high and the pins of the LED are given

low to display a number.

Seven Segment Display Working

When the power is given to all the segments, then the number 8 will be displayed. If you

disconnect the power for segment G (that means 7) then that will result number 0. The circuit

of the seven segment display is designed in such a way that the voltage at different pins can

be applied at the same time. In the same way, you can form the combinations to display

numerals from 0 to 9. Practically, seven segment displays are available with two structures;

both the type of displays consists of 10 pins.

131

The numeric seven segment displays can also display other characters. But generally A-G and

L, T, O, S and others are also available. Some problems may occur with the H, X, 2, and Z.

Anyways the common seven segment display is numeric only. Alphanumeric displays are

also available but cost is little more. These types of displays still have a real purpose due to

its high illumination and 7 segment displays are used in dark areas like railway stations. Even

7 segment display based countdown display is used in NASA, which can be read easily even

in sunlight.

Types of 7-Segment Displays

There are two types of seven segment displays available in the market. According to the type

of application, these displays can be used. The two configurations of seven segment displays

are discussed below.

 Common Anode Display

 Common Cathode Display

7- Segment Display Configuration

Common Cathode 7-segment Display

In this type of display, all the cathode connections of the LED segments are connected

together to logic 0 or ground. The separate segments are lightened by applying the logic 1 or

HIGH signal through a current limiting resistor to forward bias the individual anode terminals

a to g.

132

Common Cathode 7-segment Display

Common Anode 7-segment Display

In this type of display, all the anode connections of the LED segments are connected together

to logic 1. The separate segments are lightened by applying of the logic 0 or LOW signal

through a current limiting resistor to the cathode of the particular segment a to g.

7-Segment Display Segments for all Numbers.

Then for a 7-segment display, we can produce a truth table giving the individual segments

that need to be illuminated in order to produce the required decimal digit from 0 through 9 as

shown below.

Driving a 7-segment Display

Although a 7-segment display can be thought of as a single display, it is still seven individual

LEDs within a single package and as such these LEDs need protection from over current.

133

LEDs produce light only when it is forward biased with the amount of light emitted being

proportional to the forward current. This means that a LEDs light intensity increases in an

approximately linear manner with an increasing current. So this forward current must be

controlled and limited to a safe value by an external resistor to prevent damage to the LED

segments.

The forward voltage drop across a red LED segment is very low at about 2-to-2.2 volts, (blue

and white LEDs can be as high as 3.6 volts) so to illuminate correctly, the LED segments

should be connected to a voltage source in excess of this forward voltage value with a series

resistance used to limit the forward current to a desirable value.

Typically for a standard red coloured 7-segment display, each LED segment can draw about

15 mA to illuminated correctly, so on a 5 volt digital logic circuit, the value of the current

limiting resistor would be about 200Ω (5v – 2v)/15mA, or 220Ω to the nearest higher

preferred value.

So to understand how the segments of the display are connected to a 220Ω current limiting

resistors consider the circuit below.

8.4 PROGRAM:

8.4.1 PROGRAM TO DISPLAY NUMBERS FROM 0 –to- 9:

ADDRESS

MACHINE

CODE
LABEL MNEMONIC COMMENTS

 Opcode Operands

8000 MOV 0A0,#0E8 ; Initialize all 8255

8003 MOV R0,#03H ; Ports as output

8005 MOV A,#80H

134

8007 MOVX @R0,A

 MOV R0, #00H

 MOV

DPTR,

#9000
;Starting location of data

 MOV R1, #0AH ;Count value in R1

 REPT: MOVX A,@DPTR ;Get data from memory

 MOVX @R0, A ; O/p data to ports

 INC DPTR ;Next data location

 ACALL DELAY ; Introduce delay

 DJNZ R1, REPT

 SJMP REPT ;

 DELAY: MOV R5, #0FFH ; delay subroutine

 L1: MOV R4, #0F0H

 L2: DJNZ R4,L2

 DJNZ R5,L1

 RET

INPUTS:

9000=0C0

9001=0F9

9002=0A4

9003=0B0

9004=99

9005=92

9006=82

9007=0F8

9008=80

9009=90

900A=88

8.5 RESULT: we have interfaced 7-segment display with 8051 and displayed the numbers 0

to 9 on 7-segment display.

8.6 Viva Questions:

1. Define timer operation.

135

2. Define counter operation.

3. Mention the operating modes of timer/counter in 8051?

4. What is RS 232C?

5. Why are drivers bused in between RS232 and microcontroller?

6. Explain the function of each bit of SCON register.

7. Explain the function of each bit of PCON register.

8. How will you double the baud rate in 8051?

9. What is mode-0 operation in serial communication ports

10. What is mode 3 operation in serial communication ports?

	6.6 Viva Questions:
	Stepper motor.
	BASICS OF STEPPER MOTOR:
	Circuit diagram:

	8.7 Viva Questions:
	11.3 PROCEDURE:
	11.4 PROGRAMS
	11.4.1 PROGRAM TO VERIFY TIMER ‘0’- COUNTER MODE:
	11.4.2 PROGRAM TO VERIFY TIMER-1 COUNTER MODE:
	11.7 EXERCISE:
	13.4 PROGRAM:
	13.7 EXERCISE:
	19.2 APPARATUS:
	19.3 PROCEDURE:
	19.4 PROGRAM:
	19.6 Viva:
	19.7 EXERCISE:
	Interfacing Switch

	7.6 Viva Questions:
	Seven Segment Display Working
	Types of 7-Segment Displays
	Common Cathode 7-segment Display
	Common Anode 7-segment Display

	7-Segment Display Segments for all Numbers.

	Driving a 7-segment Display

	8.6 Viva Questions:

